首页 磁力链接怎么用

[FreeCourseLab.com] Udemy - Modern Deep Learning in Python

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2019-4-14 02:23 2024-12-18 00:35 72 1.45 GB 77
二维码链接
[FreeCourseLab.com] Udemy - Modern Deep Learning in Python的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Introduction and Outline/1. Outline - what did you learn previously, and what will you learn in this course.mp414.43MB
  2. 1. Introduction and Outline/2. Where does this course fit into your deep learning studies.mp46MB
  3. 10. Transition to the 2nd Half of the Course/1. Transition to the 2nd Half of the Course.mp49.45MB
  4. 11. Project Facial Expression Recognition/1. Facial Expression Recognition Project Introduction.mp49.82MB
  5. 11. Project Facial Expression Recognition/2. Facial Expression Recognition Problem Description.mp421.44MB
  6. 11. Project Facial Expression Recognition/3. The class imbalance problem.mp410.11MB
  7. 11. Project Facial Expression Recognition/4. Utilities walkthrough.mp413.49MB
  8. 11. Project Facial Expression Recognition/5. Class-Based ANN in Theano.mp443.98MB
  9. 11. Project Facial Expression Recognition/6. Class-Based ANN in TensorFlow.mp437.39MB
  10. 11. Project Facial Expression Recognition/7. Facial Expression Recognition Project Summary.mp42.91MB
  11. 12. Modern Regularization Techniques/1. Modern Regularization Techniques Section Introduction.mp44.27MB
  12. 12. Modern Regularization Techniques/2. Dropout Regularization.mp422.7MB
  13. 12. Modern Regularization Techniques/3. Dropout Intuition.mp46.14MB
  14. 12. Modern Regularization Techniques/4. Noise Injection.mp48.64MB
  15. 12. Modern Regularization Techniques/5. Modern Regularization Techniques Section Summary.mp43.88MB
  16. 13. Batch Normalization/1. Batch Normalization Introduction.mp43.51MB
  17. 13. Batch Normalization/2. Exponentially-Smoothed Averages.mp47.38MB
  18. 13. Batch Normalization/3. Batch Normalization Theory.mp418.61MB
  19. 13. Batch Normalization/4. Batch Normalization Tensorflow (part 1).mp49.44MB
  20. 13. Batch Normalization/5. Batch Normalization Tensorflow (part 2).mp414.92MB
  21. 13. Batch Normalization/6. Batch Normalization Theano (part 1).mp47.65MB
  22. 13. Batch Normalization/7. Batch Normalization Theano (part 2).mp416.54MB
  23. 13. Batch Normalization/8. Noise Perspective.mp43.15MB
  24. 13. Batch Normalization/9. Batch Normalization Summary.mp42.6MB
  25. 14. Keras/1. Keras Discussion.mp411.25MB
  26. 14. Keras/2. Keras in Code.mp414.76MB
  27. 14. Keras/3. Keras Functional API.mp438.63MB
  28. 15. PyTorch/1. PyTorch Basics.mp4116.8MB
  29. 15. PyTorch/2. PyTorch Dropout.mp432.69MB
  30. 15. PyTorch/3. PyTorch Batch Norm.mp433.85MB
  31. 16. PyTorch, CNTK, and MXNet/1. PyTorch, CNTK, and MXNet.mp41.31MB
  32. 17. Appendix/1. What is the Appendix.mp45.45MB
  33. 17. Appendix/10. Proof that using Jupyter Notebook is the same as not using it.mp478.29MB
  34. 17. Appendix/11. How to Uncompress a .tar.gz file.mp45.43MB
  35. 17. Appendix/12. Python 2 vs Python 3.mp47.83MB
  36. 17. Appendix/13. What order should I take your courses in (part 1).mp429.33MB
  37. 17. Appendix/14. What order should I take your courses in (part 2).mp437.62MB
  38. 17. Appendix/2. What's the difference between neural networks and deep learning.mp445.12MB
  39. 17. Appendix/3. Manually Choosing Learning Rate and Regularization Penalty.mp47.77MB
  40. 17. Appendix/4. Windows-Focused Environment Setup 2018.mp4186.34MB
  41. 17. Appendix/5. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp443.92MB
  42. 17. Appendix/6. How to Succeed in this Course (Long Version).mp412.99MB
  43. 17. Appendix/7. How to Code by Yourself (part 1).mp424.54MB
  44. 17. Appendix/8. How to Code by Yourself (part 2).mp414.81MB
  45. 17. Appendix/9. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp438.96MB
  46. 2. Review/1. Review of Basic Concepts.mp423.36MB
  47. 2. Review/2. Where to get the MNIST dataset and Establishing a Linear Benchmark.mp411.12MB
  48. 3. Gradient Descent Full vs Batch vs Stochastic/1. What are full, batch, and stochastic gradient descent.mp45.83MB
  49. 3. Gradient Descent Full vs Batch vs Stochastic/2. Full vs Batch vs Stochastic Gradient Descent in code.mp413.99MB
  50. 4. Momentum and adaptive learning rates/1. Using Momentum to Speed Up Training.mp410.67MB
  51. 4. Momentum and adaptive learning rates/2. Nesterov Momentum.mp410.64MB
  52. 4. Momentum and adaptive learning rates/3. Momentum in Code.mp414.44MB
  53. 4. Momentum and adaptive learning rates/4. Variable and adaptive learning rates.mp418.92MB
  54. 4. Momentum and adaptive learning rates/5. Constant learning rate vs. RMSProp in Code.mp410.98MB
  55. 4. Momentum and adaptive learning rates/6. Adam Optimization.mp419.33MB
  56. 4. Momentum and adaptive learning rates/7. Adam in Code.mp413.9MB
  57. 5. Choosing Hyperparameters/1. Hyperparameter Optimization Cross-validation, Grid Search, and Random Search.mp45.1MB
  58. 5. Choosing Hyperparameters/2. Sampling Logarithmically.mp45.24MB
  59. 5. Choosing Hyperparameters/3. Grid Search in Code.mp413.77MB
  60. 5. Choosing Hyperparameters/4. Modifying Grid Search.mp42.18MB
  61. 5. Choosing Hyperparameters/5. Random Search in Code.mp47.94MB
  62. 6. Weight Initialization/1. Weight Initialization Section Introduction.mp41.52MB
  63. 6. Weight Initialization/2. Vanishing and Exploding Gradients.mp49.99MB
  64. 6. Weight Initialization/3. Weight Initialization.mp413.6MB
  65. 6. Weight Initialization/4. Local vs. Global Minima.mp45.12MB
  66. 6. Weight Initialization/5. Weight Initialization Section Summary.mp42.69MB
  67. 7. Theano/1. Theano Basics Variables, Functions, Expressions, Optimization.mp419.35MB
  68. 7. Theano/2. Building a neural network in Theano.mp421.79MB
  69. 7. Theano/3. Is Theano Dead.mp417.81MB
  70. 8. TensorFlow/1. TensorFlow Basics Variables, Functions, Expressions, Optimization.mp417.11MB
  71. 8. TensorFlow/2. Building a neural network in TensorFlow.mp423.84MB
  72. 8. TensorFlow/3. What is a Session (And more).mp423.56MB
  73. 9. GPU Speedup, Homework, and Other Misc Topics/1. Setting up a GPU Instance on Amazon Web Services.mp425.68MB
  74. 9. GPU Speedup, Homework, and Other Misc Topics/2. Can Big Data be used to Speed Up Backpropagation.mp45.22MB
  75. 9. GPU Speedup, Homework, and Other Misc Topics/3. Exercises and Concepts Still to be Covered.mp44.46MB
  76. 9. GPU Speedup, Homework, and Other Misc Topics/4. How to Improve your Theano and Tensorflow Skills.mp47.33MB
  77. 9. GPU Speedup, Homework, and Other Misc Topics/5. Theano vs. TensorFlow.mp49.14MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统