首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[Tutorialsplanet.NET] Udemy - 2019 AWS SageMaker and Machine Learning - With Python
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2020-8-7 05:08
2024-12-27 07:44
186
4.59 GB
171
磁力链接
magnet:?xt=urn:btih:0b9dadcded665fab48e4f0ff8a8fb101dee5f360
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOjBiOWRhZGNkZWQ2NjVmYWI0OGU0ZjBmZjhhOGZiMTAxZGVlNWYzNjBaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
Tutorialsplanet
NET
Udemy
-
2019
AWS
SageMaker
and
Machine
Learning
-
With
Python
文件列表
1. Introduction and Housekeeping/1. Introduction.mp4
3.62MB
1. Introduction and Housekeeping/2. Root Account Setup and Billing Dashboard Overview.mp4
5.96MB
1. Introduction and Housekeeping/3. Enable Access to Billing Data for IAM Users.mp4
9.71MB
1. Introduction and Housekeeping/4. Create Users Required For the Course.mp4
25.8MB
1. Introduction and Housekeeping/5. AWS Command Line Interface Tool Setup and Summary.mp4
7.21MB
1. Introduction and Housekeeping/6. Six Advantages of Cloud Computing.mp4
30.31MB
1. Introduction and Housekeeping/7. AWS Global Infrastructure Overview.mp4
40.08MB
10. 2019 SageMaker HyperParameter Tuning/2. Introduction to Hyperparameter Tuning.mp4
42.37MB
10. 2019 SageMaker HyperParameter Tuning/3. Lab Tuning Movie Rating Factorization Machine Recommender System.mp4
154.02MB
10. 2019 SageMaker HyperParameter Tuning/4. Lab Step 2 Tuning Movie Rating Recommender System.mp4
48.13MB
11. AWS Machine Learning Service/10. Data Types supported by AWS Machine Learning.mp4
5.34MB
11. AWS Machine Learning Service/11. Linear Regression Introduction.mp4
12.67MB
11. AWS Machine Learning Service/12. Binary Classification Introduction.mp4
9.19MB
11. AWS Machine Learning Service/13. Multiclass Classification Introduction.mp4
6.03MB
11. AWS Machine Learning Service/14. Data Visualization - Linear, Log, Quadratic and More.mp4
17.42MB
11. AWS Machine Learning Service/2. Python Development Environment and Boto3 Setup.mp4
14.96MB
11. AWS Machine Learning Service/3. Project Source Code and Data Setup.mp4
10MB
11. AWS Machine Learning Service/4. Lab Intro to Python Jupyter Notebook Environment, Pandas, Matplotlib.mp4
31.75MB
11. AWS Machine Learning Service/5. Lab AWS S3 Bucket Setup and Configure Security.mp4
18.06MB
11. AWS Machine Learning Service/6. Summary.mp4
2.17MB
11. AWS Machine Learning Service/9. Machine Learning Terminology.mp4
7.05MB
12. Linear Regression/1. Lab Linear Model, Squared Error Loss Function, Stochastic Gradient Descent.mp4
31.26MB
12. Linear Regression/2. Lab Linear Regression for complex shapes.mp4
11.43MB
12. Linear Regression/3. Summary.mp4
3.86MB
13. AWS - Linear Regression Models/1. Lab Simple Training Data.mp4
15.48MB
13. AWS - Linear Regression Models/2. Lab Datasource.mp4
28.93MB
13. AWS - Linear Regression Models/3. Lab Train Model with default recipe.mp4
9.8MB
13. AWS - Linear Regression Models/5. Concept - How to evaluate regression model accuracy.mp4
9.53MB
13. AWS - Linear Regression Models/6. Lab Evaluate predictive quality of the trained model.mp4
28.72MB
13. AWS - Linear Regression Models/7. Lab Review Default Recipe Settings Used To Train model.mp4
4.56MB
13. AWS - Linear Regression Models/8. Lab Train Model With Custom Recipe and Review Performance.mp4
22.05MB
13. AWS - Linear Regression Models/9. Model Performance Summary and Conclusion.mp4
5.06MB
14. Adding Features To Improve Model/1. Lab Quadratic Fit Training Data.mp4
15.41MB
14. Adding Features To Improve Model/2. Lab Underfitting With Linear Features.mp4
44.89MB
14. Adding Features To Improve Model/3. Lab Normal Fit With Quadratic Features.mp4
27.3MB
14. Adding Features To Improve Model/4. Summary.mp4
3.28MB
15. Normalization/1. Lab Impact of Features With Different Magnitude.mp4
37.69MB
15. Normalization/2. Concept Normalization to smoothen magnitude differences.mp4
13.24MB
15. Normalization/3. Lab Train Model With Feature Normalizaton.mp4
23.01MB
15. Normalization/4. Summary.mp4
3.17MB
16. Adding Complex Features/1. Lab Prepare Training Data.mp4
8.14MB
16. Adding Complex Features/2. Lab Adding Complex Features.mp4
4.8MB
16. Adding Complex Features/3. Lab Train Model With Higher Order Features.mp4
26.54MB
16. Adding Complex Features/4. Lab Performance Of Model With Degree 1 Features.mp4
6.98MB
16. Adding Complex Features/5. Lab Performance of Model with Degree 4 Features.mp4
6.62MB
16. Adding Complex Features/6. Lab Performance of Model With Degree 15 Features.mp4
3.68MB
16. Adding Complex Features/7. Summary.mp4
3.66MB
17. Kaggle Bike Hourly Rental Prediction/1. Review Kaggle Bike Train Problem And Dataset.mp4
37.86MB
17. Kaggle Bike Hourly Rental Prediction/2. Lab Train Model To Predict Hourly Rental.mp4
13.32MB
17. Kaggle Bike Hourly Rental Prediction/3. Lab Evaluate Prediction Quality.mp4
23.09MB
17. Kaggle Bike Hourly Rental Prediction/4. Linear Regression Wrapup and Summary.mp4
3.39MB
18. Logistic Regression/1. Binary Classification - Logistic Regression, Loss Function, Optimization.mp4
19.68MB
18. Logistic Regression/2. Lab Binary Classification Approach.mp4
19.63MB
18. Logistic Regression/3. True Positive, True Negative, False Positive and False Negative.mp4
18.68MB
18. Logistic Regression/4. Lab Logistic Optimization Objectives.mp4
12.58MB
18. Logistic Regression/5. Lab Logistic Cost Function.mp4
7.46MB
18. Logistic Regression/6. Lab Cost Example.mp4
9.14MB
18. Logistic Regression/7. Optimizing Weights.mp4
9.21MB
18. Logistic Regression/8. Summary.mp4
7.04MB
19. Onset of Diabetes Prediction/1. Problem Objective, Input Data and Strategy.mp4
22.37MB
19. Onset of Diabetes Prediction/10. Lab Batch Prediction and Compute Metrics.mp4
22.66MB
19. Onset of Diabetes Prediction/11. Summary.mp4
4.39MB
19. Onset of Diabetes Prediction/2. Lab Prepare For Training.mp4
8.59MB
19. Onset of Diabetes Prediction/3. Lab Training a Classification Model.mp4
13.23MB
19. Onset of Diabetes Prediction/4. Concept Classification Metrics.mp4
10.29MB
19. Onset of Diabetes Prediction/5. Concept Classification Insights with AWS Histograms.mp4
12.62MB
19. Onset of Diabetes Prediction/6. Concept AUC Metric.mp4
4.17MB
19. Onset of Diabetes Prediction/7. Lab Review Diabetes Model Performance.mp4
18.01MB
19. Onset of Diabetes Prediction/8. Lab Cutoff Threshold Interactive Testing.mp4
6.21MB
19. Onset of Diabetes Prediction/9. Lab Evaluating Prediction Quality With Additional Dataset.mp4
19.94MB
2. 2019 SageMaker Housekeeping/2. Demo - S3 Bucket Setup.mp4
20.59MB
2. 2019 SageMaker Housekeeping/3. Demo - Setup SageMaker Notebook Instance.mp4
41.93MB
2. 2019 SageMaker Housekeeping/4. 2019 Demo - Source Code and Data Setup.mp4
33.32MB
20. Multiclass Classifiers using Multinomial Logistic Regression/1. Lab Iris Classifcation.mp4
21.1MB
20. Multiclass Classifiers using Multinomial Logistic Regression/2. Lab Train Classifier with Default and Custom Recipe.mp4
23.61MB
20. Multiclass Classifiers using Multinomial Logistic Regression/3. Concept Evaluating Predictive Quality of Multiclass Classifiers.mp4
5MB
20. Multiclass Classifiers using Multinomial Logistic Regression/4. Concept Confusion Matrix To Evaluating Predictive Quality.mp4
9.95MB
20. Multiclass Classifiers using Multinomial Logistic Regression/5. Lab Evaluate Performance of Iris Classifiers using Default Recipe.mp4
13.36MB
20. Multiclass Classifiers using Multinomial Logistic Regression/6. Lab Evaluate Performance of Iris Classifiers using Custom Recipe.mp4
9.95MB
20. Multiclass Classifiers using Multinomial Logistic Regression/7. Lab Batch Prediction and Computing Metrics using Python Code.mp4
26.95MB
20. Multiclass Classifiers using Multinomial Logistic Regression/8. Summary.mp4
6.58MB
21. Text Based Classification with AWS Twitter Dataset/1. AWS Twitter Feed Classification for Customer Service.mp4
14.57MB
21. Text Based Classification with AWS Twitter Dataset/2. Lab Train, Evaluate Model and Assess Predictive Quality.mp4
29.03MB
21. Text Based Classification with AWS Twitter Dataset/3. Lab Interactive Prediction with AWS.mp4
11.74MB
21. Text Based Classification with AWS Twitter Dataset/4. Logistic Regression Summary.mp4
1.52MB
22. Data Transformation using Recipes/1. Recipe Overview.mp4
8.49MB
22. Data Transformation using Recipes/2. Recipe Example.mp4
10.18MB
22. Data Transformation using Recipes/3. Text Transformation.mp4
13.27MB
22. Data Transformation using Recipes/4. Numeric Transformation - Quantile Binning.mp4
4.63MB
22. Data Transformation using Recipes/5. Numeric Transformation - Normalization.mp4
6.99MB
22. Data Transformation using Recipes/6. Cartesian Product Transformation - Categorical and Text.mp4
3.95MB
22. Data Transformation using Recipes/7. Summary.mp4
711.87KB
23. Hyper Parameters, Model Optimization and Lifecycle/1. Introduction.mp4
1.02MB
23. Hyper Parameters, Model Optimization and Lifecycle/2. Data Rearrangement, Maximum Model Size, Passes, Shuffle Type.mp4
15.34MB
23. Hyper Parameters, Model Optimization and Lifecycle/3. Regularization, Learning Rate.mp4
5.76MB
23. Hyper Parameters, Model Optimization and Lifecycle/4. Regularization Effect.mp4
5.94MB
23. Hyper Parameters, Model Optimization and Lifecycle/5. Improving Model Quality.mp4
14.1MB
23. Hyper Parameters, Model Optimization and Lifecycle/6. Model Maintenance.mp4
13.22MB
23. Hyper Parameters, Model Optimization and Lifecycle/7. AWS Machine Learning System Limits.mp4
4.32MB
23. Hyper Parameters, Model Optimization and Lifecycle/8. AWS Machine Learning Pricing.mp4
4.94MB
24. Integration of AWS Machine Learning With Your Application/1. Introduction.mp4
5.32MB
24. Integration of AWS Machine Learning With Your Application/10. Demo Allowing Prediction Only For Registered Users.mp4
3.51MB
24. Integration of AWS Machine Learning With Your Application/11. Cognito Overview.mp4
3.61MB
24. Integration of AWS Machine Learning With Your Application/12. Lab Cognito User Pool Configuration.mp4
19.63MB
24. Integration of AWS Machine Learning With Your Application/13. Lab AngularJS Web Client - Invoke Prediction for authorized users.mp4
41.97MB
24. Integration of AWS Machine Learning With Your Application/14. Lab Invoke Machine Learning Service From AWS EC2 Instance.mp4
16.03MB
24. Integration of AWS Machine Learning With Your Application/15. Summary.mp4
884.55KB
24. Integration of AWS Machine Learning With Your Application/2. Integration Scenarios.mp4
4.56MB
24. Integration of AWS Machine Learning With Your Application/3. Security using IAM.mp4
7.3MB
24. Integration of AWS Machine Learning With Your Application/4. Hands-on lab - List of Demos and Objective.mp4
4.88MB
24. Integration of AWS Machine Learning With Your Application/5. Lab Enable Real Time End Point and Configure IAM Prediction User.mp4
18.83MB
24. Integration of AWS Machine Learning With Your Application/6. Lab Invoking Prediction From AWS Command Line Interface.mp4
15.09MB
24. Integration of AWS Machine Learning With Your Application/7. Lab Invoking Prediction From Python Client.mp4
10.5MB
24. Integration of AWS Machine Learning With Your Application/8. Lab Python Client to Train, Evaluate Models and Integrate with AWS.mp4
37.41MB
24. Integration of AWS Machine Learning With Your Application/9. Lab Invoking Prediction From Web Page AngularJS Client.mp4
20.39MB
26. Conclusion/2. Conclusion.mp4
1.27MB
3. 2019 Machine Learning Concepts/1. 2019 Introduction to Machine Learning, Concepts, Terminologies.mp4
70.19MB
3. 2019 Machine Learning Concepts/2. 2019 Data Types - How to handle mixed data types.mp4
102.2MB
3. 2019 Machine Learning Concepts/3. 2019 Introduction to Python Notebook Environment.mp4
85.57MB
3. 2019 Machine Learning Concepts/4. 2019 Introduction to working with Missing Data.mp4
81.7MB
3. 2019 Machine Learning Concepts/5. 2019 Data Visualization - Linear, Log, Quadratic and More.mp4
37.8MB
4. 2019 SageMaker Service Overview/2. SageMaker Overview.mp4
13.81MB
4. 2019 SageMaker Service Overview/3. Compute Instance Families and Pricing.mp4
19.82MB
4. 2019 SageMaker Service Overview/4. Algorithms and Data Formats Supported For Training and Inference.mp4
9.58MB
5. XGBoost - Gradient Boosted Trees/1. Introduction to XGBoost.mp4
72.6MB
5. XGBoost - Gradient Boosted Trees/10. Demo - Training on SageMaker Cloud - Kaggle Bike Rental Model Version 3.mp4
127.23MB
5. XGBoost - Gradient Boosted Trees/11. Demo - Invoking SageMaker Model Endpoints For Real Time Predictions.mp4
45.34MB
5. XGBoost - Gradient Boosted Trees/12. Demo - Invoking SageMaker Model Endpoints From Client Outside of AWS.mp4
27.67MB
5. XGBoost - Gradient Boosted Trees/15. XGBoost Hyper Parameter Tuning.mp4
51.22MB
5. XGBoost - Gradient Boosted Trees/16. Demo - XGBoost Multi-Class Classification Iris Data.mp4
81.81MB
5. XGBoost - Gradient Boosted Trees/17. Demo - XGBoost Binary Classifier For Diabetes Prediction.mp4
45.25MB
5. XGBoost - Gradient Boosted Trees/18. Demo - XGBoost Binary Classifier for Edible Mushroom Prediction.mp4
47.36MB
5. XGBoost - Gradient Boosted Trees/19. Summary - XGBoost.mp4
13.23MB
5. XGBoost - Gradient Boosted Trees/2. Source Code Overview.mp4
17.12MB
5. XGBoost - Gradient Boosted Trees/3. Demo - Create Files in SageMaker Data Formats and Save Files To S3.mp4
63.1MB
5. XGBoost - Gradient Boosted Trees/4. Demo - Working with XGBoost - Linear Regression Straight Line Fit.mp4
99.68MB
5. XGBoost - Gradient Boosted Trees/5. Demo - XGBoost Example with Quadratic Fit.mp4
34.8MB
5. XGBoost - Gradient Boosted Trees/6. Demo - Kaggle Bike Rental Data Setup, Exploration and Preparation.mp4
97.12MB
5. XGBoost - Gradient Boosted Trees/7. Demo - Kaggle Bike Rental Model Version 1.mp4
96.16MB
5. XGBoost - Gradient Boosted Trees/8. Demo - Kaggle Bike Rental Model Version 2.mp4
41.91MB
5. XGBoost - Gradient Boosted Trees/9. Demo - Kaggle Bike Rental Model Version 3.mp4
35.5MB
6. SageMaker - Principal Component Analysis (PCA)/10. Demo - PCA Projection with SageMaker.mp4
24.31MB
6. SageMaker - Principal Component Analysis (PCA)/12. Summary.mp4
6.7MB
6. SageMaker - Principal Component Analysis (PCA)/2. Introduction to Principal Component Analysis (PCA).mp4
52.59MB
6. SageMaker - Principal Component Analysis (PCA)/3. PCA Demo Overview.mp4
5.1MB
6. SageMaker - Principal Component Analysis (PCA)/4. Demo - PCA with Random Dataset.mp4
26.64MB
6. SageMaker - Principal Component Analysis (PCA)/5. Demo - PCA with Correlated Dataset.mp4
47.2MB
6. SageMaker - Principal Component Analysis (PCA)/7. Demo - PCA with Kaggle Bike Sharing - Overview and Normalization.mp4
32.79MB
6. SageMaker - Principal Component Analysis (PCA)/8. Demo - PCA Local Model with Kaggle Bike Train.mp4
30.48MB
6. SageMaker - Principal Component Analysis (PCA)/9. Demo - PCA training with SageMaker.mp4
38.75MB
7. SageMaker - Factorization Machines/2. Introduction to Factorization Machines.mp4
36.09MB
7. SageMaker - Factorization Machines/4. Demo - Movie Recommender Data Preparation.mp4
90.7MB
7. SageMaker - Factorization Machines/5. Demo - Movie Recommender Model Training.mp4
49.05MB
7. SageMaker - Factorization Machines/6. Demo - Movie Predictions By User.mp4
68.99MB
8. SageMaker - DeepAR Time Series Forecasting/10. Demo - DeepAR Dynamic Features Training and Prediction.mp4
26.85MB
8. SageMaker - DeepAR Time Series Forecasting/11. Summary.mp4
10.97MB
8. SageMaker - DeepAR Time Series Forecasting/2. Introduction to DeepAR Time Series Forecasting.mp4
75.8MB
8. SageMaker - DeepAR Time Series Forecasting/3. DeepAR Training and Inference Formats.mp4
89.42MB
8. SageMaker - DeepAR Time Series Forecasting/4. Working with Time Series Data, Handling Missing Values.mp4
65.93MB
8. SageMaker - DeepAR Time Series Forecasting/5. Demo - Bike Rental as Time Series Forecasting Problem.mp4
104.99MB
8. SageMaker - DeepAR Time Series Forecasting/6. Demo - Bike Rental Model Training.mp4
77.28MB
8. SageMaker - DeepAR Time Series Forecasting/7. Demo - Bike Rental Prediction.mp4
48.62MB
8. SageMaker - DeepAR Time Series Forecasting/8. Demo - DeepAR Categories.mp4
64.56MB
8. SageMaker - DeepAR Time Series Forecasting/9. Demo - DeepAR Dynamic Features Data Preparation.mp4
67.57MB
9. 2019 Integration Options - Model Endpoint/2. Integration Overview.mp4
11.75MB
9. 2019 Integration Options - Model Endpoint/3. Install Python and Boto3 - Local Machine.mp4
13.65MB
9. 2019 Integration Options - Model Endpoint/5. Client to Endpoint using SageMaker SDK.mp4
76.98MB
9. 2019 Integration Options - Model Endpoint/6. Client to Endpoint using Boto3 SDK.mp4
38.28MB
9. 2019 Integration Options - Model Endpoint/7. Microservice - Lambda to Endpoint - Payload.mp4
23.68MB
9. 2019 Integration Options - Model Endpoint/8. Microservice - Lambda to Endpoint.mp4
74.18MB
9. 2019 Integration Options - Model Endpoint/9. Microservice - API Gateway, Lambda to Endpoint.mp4
84.07MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统