首页 磁力链接怎么用

[Tutorialsplanet.NET] Udemy - Deep Learning Prerequisites Linear Regression in Python

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2021-7-13 16:39 2025-1-8 23:11 320 1.11 GB 54
二维码链接
[Tutorialsplanet.NET] Udemy - Deep Learning Prerequisites Linear Regression in Python的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Welcome/1. Welcome.mp449.68MB
  2. 1. Welcome/2. Introduction and Outline.mp46.34MB
  3. 1. Welcome/3. What is machine learning How does linear regression play a role.mp48.43MB
  4. 1. Welcome/4. Anyone Can Succeed in this Course.mp483.98MB
  5. 1. Welcome/5. Statistics vs. Machine Learning.mp455.52MB
  6. 2. 1-D Linear Regression Theory and Code/1. Define the model in 1-D, derive the solution (Updated Version).mp419.34MB
  7. 2. 1-D Linear Regression Theory and Code/10. R-squared Quiz 1.mp42.8MB
  8. 2. 1-D Linear Regression Theory and Code/11. Suggestion Box.mp416.08MB
  9. 2. 1-D Linear Regression Theory and Code/2. Define the model in 1-D, derive the solution.mp424.66MB
  10. 2. 1-D Linear Regression Theory and Code/3. Coding the 1-D solution in Python.mp414.43MB
  11. 2. 1-D Linear Regression Theory and Code/4. Exercise Theory vs. Code.mp41.05MB
  12. 2. 1-D Linear Regression Theory and Code/5. Determine how good the model is - r-squared.mp411.3MB
  13. 2. 1-D Linear Regression Theory and Code/6. R-squared in code.mp44.5MB
  14. 2. 1-D Linear Regression Theory and Code/7. Introduction to Moore's Law Problem.mp44.41MB
  15. 2. 1-D Linear Regression Theory and Code/8. Demonstrating Moore's Law in Code.mp417.51MB
  16. 2. 1-D Linear Regression Theory and Code/9. Moore's Law Derivation.mp420.18MB
  17. 3. Multiple linear regression and polynomial regression/1. Define the multi-dimensional problem and derive the solution (Updated Version).mp414.44MB
  18. 3. Multiple linear regression and polynomial regression/2. Define the multi-dimensional problem and derive the solution.mp436.08MB
  19. 3. Multiple linear regression and polynomial regression/3. How to solve multiple linear regression using only matrices.mp43.1MB
  20. 3. Multiple linear regression and polynomial regression/4. Coding the multi-dimensional solution in Python.mp414.92MB
  21. 3. Multiple linear regression and polynomial regression/5. Polynomial regression - extending linear regression (with Python code).mp416.4MB
  22. 3. Multiple linear regression and polynomial regression/6. Predicting Systolic Blood Pressure from Age and Weight.mp412.34MB
  23. 3. Multiple linear regression and polynomial regression/7. R-squared Quiz 2.mp43.5MB
  24. 4. Practical machine learning issues/1. What do all these letters mean.mp49.63MB
  25. 4. Practical machine learning issues/10. The Dummy Variable Trap.mp46.07MB
  26. 4. Practical machine learning issues/11. Gradient Descent Tutorial.mp422.8MB
  27. 4. Practical machine learning issues/12. Gradient Descent for Linear Regression.mp43.51MB
  28. 4. Practical machine learning issues/13. Bypass the Dummy Variable Trap with Gradient Descent.mp48.5MB
  29. 4. Practical machine learning issues/14. L1 Regularization - Theory.mp44.66MB
  30. 4. Practical machine learning issues/15. L1 Regularization - Code.mp48.26MB
  31. 4. Practical machine learning issues/16. L1 vs L2 Regularization.mp44.8MB
  32. 4. Practical machine learning issues/17. Why Divide by Square Root of D.mp423.49MB
  33. 4. Practical machine learning issues/2. Interpreting the Weights.mp414.15MB
  34. 4. Practical machine learning issues/3. Generalization error, train and test sets.mp44.39MB
  35. 4. Practical machine learning issues/4. Generalization and Overfitting Demonstration in Code.mp417.25MB
  36. 4. Practical machine learning issues/5. Categorical inputs.mp48.18MB
  37. 4. Practical machine learning issues/6. One-Hot Encoding Quiz.mp43.78MB
  38. 4. Practical machine learning issues/7. Probabilistic Interpretation of Squared Error.mp48.13MB
  39. 4. Practical machine learning issues/8. L2 Regularization - Theory.mp46.65MB
  40. 4. Practical machine learning issues/9. L2 Regularization - Code.mp48.08MB
  41. 5. Conclusion and Next Steps/1. Brief overview of advanced linear regression and machine learning topics.mp48.13MB
  42. 5. Conclusion and Next Steps/2. Exercises, practice, and how to get good at this.mp47.16MB
  43. 6. Setting Up Your Environment (FAQ by Student Request)/1. Windows-Focused Environment Setup 2018.mp4186.29MB
  44. 6. Setting Up Your Environment (FAQ by Student Request)/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp443.92MB
  45. 7. Extra Help With Python Coding for Beginners (FAQ by Student Request)/1. How to Code by Yourself (part 1).mp424.54MB
  46. 7. Extra Help With Python Coding for Beginners (FAQ by Student Request)/2. How to Code by Yourself (part 2).mp414.81MB
  47. 7. Extra Help With Python Coding for Beginners (FAQ by Student Request)/3. Proof that using Jupyter Notebook is the same as not using it.mp478.28MB
  48. 7. Extra Help With Python Coding for Beginners (FAQ by Student Request)/4. Python 2 vs Python 3.mp47.83MB
  49. 8/1. How to Succeed in this Course (Long Version).mp418.32MB
  50. 8/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp438.95MB
  51. 8/3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp429.32MB
  52. 8/4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp437.62MB
  53. 9. Appendix FAQ Finale/1. What is the Appendix.mp45.45MB
  54. 9. Appendix FAQ Finale/2. BONUS Where to get Udemy coupons and FREE deep learning material.mp437.83MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统