首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[GigaCourse.Com] Udemy - 2021 Python for Machine Learning & Data Science Masterclass
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2021-9-12 20:26
2024-11-23 14:07
223
10.38 GB
209
磁力链接
magnet:?xt=urn:btih:32ef324c4516c462aac86ad31bbae6c85a27245b
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOjMyZWYzMjRjNDUxNmM0NjJhYWM4NmFkMzFiYmFlNmM4NWEyNzI0NWJaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
GigaCourse
Com
Udemy
-
2021
Python
for
Machine
Learning
&
Data
Science
Masterclass
文件列表
01 Introduction to Course/002 COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP!.mp4
24.55MB
01 Introduction to Course/003 Anaconda Python and Jupyter Install and Setup.mp4
84.52MB
01 Introduction to Course/005 Environment Setup.mp4
23.23MB
02 OPTIONAL_ Python Crash Course/002 Python Crash Course - Part One.mp4
29.76MB
02 OPTIONAL_ Python Crash Course/003 Python Crash Course - Part Two.mp4
25.85MB
02 OPTIONAL_ Python Crash Course/004 Python Crash Course - Part Three.mp4
32.02MB
02 OPTIONAL_ Python Crash Course/005 Python Crash Course - Exercise Questions.mp4
7.82MB
02 OPTIONAL_ Python Crash Course/006 Python Crash Course - Exercise Solutions.mp4
33.49MB
03 Machine Learning Pathway Overview/001 Machine Learning Pathway.mp4
40.54MB
04 NumPy/001 Introduction to NumPy.mp4
7.88MB
04 NumPy/002 NumPy Arrays.mp4
99.45MB
04 NumPy/003 NumPy Indexing and Selection.mp4
39.64MB
04 NumPy/004 NumPy Operations.mp4
36.04MB
04 NumPy/005 NumPy Exercises.mp4
9.66MB
04 NumPy/006 Numpy Exercises - Solutions.mp4
34.9MB
05 Pandas/001 Introduction to Pandas.mp4
8.72MB
05 Pandas/002 Series - Part One.mp4
28.63MB
05 Pandas/003 Series - Part Two.mp4
26.13MB
05 Pandas/004 DataFrames - Part One - Creating a DataFrame.mp4
97.4MB
05 Pandas/005 DataFrames - Part Two - Basic Properties.mp4
40.26MB
05 Pandas/006 DataFrames - Part Three - Working with Columns.mp4
84.07MB
05 Pandas/007 DataFrames - Part Four - Working with Rows.mp4
72.57MB
05 Pandas/008 Pandas - Conditional Filtering.mp4
69.23MB
05 Pandas/009 Pandas - Useful Methods - Apply on Single Column.mp4
53.73MB
05 Pandas/010 Pandas - Useful Methods - Apply on Multiple Columns.mp4
85.33MB
05 Pandas/011 Pandas - Useful Methods - Statistical Information and Sorting.mp4
74.4MB
05 Pandas/012 Missing Data - Overview.mp4
27.26MB
05 Pandas/013 Missing Data - Pandas Operations.mp4
73.6MB
05 Pandas/014 GroupBy Operations - Part One.mp4
86.92MB
05 Pandas/015 GroupBy Operations - Part Two - MultiIndex.mp4
93.05MB
05 Pandas/016 Combining DataFrames - Concatenation.mp4
36.84MB
05 Pandas/017 Combining DataFrames - Inner Merge.mp4
40.28MB
05 Pandas/018 Combining DataFrames - Left and Right Merge.mp4
16.43MB
05 Pandas/019 Combining DataFrames - Outer Merge.mp4
22.19MB
05 Pandas/020 Pandas - Text Methods for String Data.mp4
45.14MB
05 Pandas/021 Pandas - Time Methods for Date and Time Data.mp4
80.22MB
05 Pandas/022 Pandas Input and Output - CSV Files.mp4
37.13MB
05 Pandas/023 Pandas Input and Output - HTML Tables.mp4
102.38MB
05 Pandas/024 Pandas Input and Output - Excel Files.mp4
25.91MB
05 Pandas/025 Pandas Input and Output - SQL Databases.mp4
96.18MB
05 Pandas/026 Pandas Pivot Tables.mp4
128.74MB
05 Pandas/027 Pandas Project Exercise Overview.mp4
39.38MB
05 Pandas/028 Pandas Project Exercise Solutions.mp4
172.62MB
06 Matplotlib/001 Introduction to Matplotlib.mp4
11.39MB
06 Matplotlib/002 Matplotlib Basics.mp4
31.07MB
06 Matplotlib/003 Matplotlib - Understanding the Figure Object.mp4
11.7MB
06 Matplotlib/004 Matplotlib - Implementing Figures and Axes.mp4
34.86MB
06 Matplotlib/005 Matplotlib - Figure Parameters.mp4
11.4MB
06 Matplotlib/006 Matplotlib - Subplots Functionality.mp4
96.18MB
06 Matplotlib/007 Matplotlib Styling - Legends.mp4
16.21MB
06 Matplotlib/008 Matplotlib Styling - Colors and Styles.mp4
44.29MB
06 Matplotlib/009 Advanced Matplotlib Commands (Optional).mp4
25.24MB
06 Matplotlib/010 Matplotlib Exercise Questions Overview.mp4
48.94MB
06 Matplotlib/011 Matplotlib Exercise Questions - Solutions.mp4
105.83MB
07 Seaborn Data Visualizations/001 Introduction to Seaborn.mp4
10.53MB
07 Seaborn Data Visualizations/002 Scatterplots with Seaborn.mp4
111.13MB
07 Seaborn Data Visualizations/003 Distribution Plots - Part One - Understanding Plot Types.mp4
15.04MB
07 Seaborn Data Visualizations/004 Distribution Plots - Part Two - Coding with Seaborn.mp4
44.41MB
07 Seaborn Data Visualizations/005 Categorical Plots - Statistics within Categories - Understanding Plot Types.mp4
16MB
07 Seaborn Data Visualizations/006 Categorical Plots - Statistics within Categories - Coding with Seaborn.mp4
51.61MB
07 Seaborn Data Visualizations/007 Categorical Plots - Distributions within Categories - Understanding Plot Types.mp4
44.98MB
07 Seaborn Data Visualizations/008 Categorical Plots - Distributions within Categories - Coding with Seaborn.mp4
84.59MB
07 Seaborn Data Visualizations/009 Seaborn - Comparison Plots - Understanding the Plot Types.mp4
10.57MB
07 Seaborn Data Visualizations/010 Seaborn - Comparison Plots - Coding with Seaborn.mp4
51.13MB
07 Seaborn Data Visualizations/011 Seaborn Grid Plots.mp4
86.98MB
07 Seaborn Data Visualizations/012 Seaborn - Matrix Plots.mp4
34.45MB
07 Seaborn Data Visualizations/013 Seaborn Plot Exercises Overview.mp4
15.8MB
07 Seaborn Data Visualizations/014 Seaborn Plot Exercises Solutions.mp4
105.67MB
08 Data Analysis and Visualization Capstone Project Exercise/001 Capstone Project Overview.mp4
93.2MB
08 Data Analysis and Visualization Capstone Project Exercise/002 Capstone Project Solutions - Part One.mp4
101.92MB
08 Data Analysis and Visualization Capstone Project Exercise/003 Capstone Project Solutions - Part Two.mp4
106.21MB
08 Data Analysis and Visualization Capstone Project Exercise/004 Capstone Project Solutions - Part Three.mp4
137.26MB
09 Machine Learning Concepts Overview/001 Introduction to Machine Learning Overview Section.mp4
13.19MB
09 Machine Learning Concepts Overview/002 Why Machine Learning_.mp4
21.01MB
09 Machine Learning Concepts Overview/003 Types of Machine Learning Algorithms.mp4
18.11MB
09 Machine Learning Concepts Overview/004 Supervised Machine Learning Process.mp4
33.53MB
09 Machine Learning Concepts Overview/005 Companion Book - Introduction to Statistical Learning.mp4
9.68MB
10 Linear Regression/001 Introduction to Linear Regression Section.mp4
3.38MB
10 Linear Regression/002 Linear Regression - Algorithm History.mp4
54.71MB
10 Linear Regression/003 Linear Regression - Understanding Ordinary Least Squares.mp4
73.28MB
10 Linear Regression/004 Linear Regression - Cost Functions.mp4
16.64MB
10 Linear Regression/005 Linear Regression - Gradient Descent.mp4
29.21MB
10 Linear Regression/006 Python coding Simple Linear Regression.mp4
83.88MB
10 Linear Regression/007 Overview of Scikit-Learn and Python.mp4
23.14MB
10 Linear Regression/008 Linear Regression - Scikit-Learn Train Test Split.mp4
61.44MB
10 Linear Regression/009 Linear Regression - Scikit-Learn Performance Evaluation - Regression.mp4
61.79MB
10 Linear Regression/010 Linear Regression - Residual Plots.mp4
29.66MB
10 Linear Regression/011 Linear Regression - Model Deployment and Coefficient Interpretation.mp4
81.24MB
10 Linear Regression/012 Polynomial Regression - Theory and Motivation.mp4
22.26MB
10 Linear Regression/013 Polynomial Regression - Creating Polynomial Features.mp4
40.08MB
10 Linear Regression/014 Polynomial Regression - Training and Evaluation.mp4
36.31MB
10 Linear Regression/015 Bias Variance Trade-Off.mp4
36.19MB
10 Linear Regression/016 Polynomial Regression - Choosing Degree of Polynomial.mp4
55.73MB
10 Linear Regression/017 Polynomial Regression - Model Deployment.mp4
23.24MB
10 Linear Regression/018 Regularization Overview.mp4
13.07MB
10 Linear Regression/019 Feature Scaling.mp4
24.36MB
10 Linear Regression/020 Introduction to Cross Validation.mp4
29.28MB
10 Linear Regression/021 Regularization Data Setup.mp4
15.43MB
10 Linear Regression/022 L2 Regularization - Ridge Regression Theory.mp4
61.08MB
10 Linear Regression/023 L2 Regularization - Ridge Regression - Python Implementation.mp4
89.37MB
10 Linear Regression/024 L1 Regularization - Lasso Regression - Background and Implementation.mp4
94.55MB
10 Linear Regression/025 L1 and L2 Regularization - Elastic Net.mp4
66.42MB
10 Linear Regression/026 Linear Regression Project - Data Overview.mp4
16.95MB
11 Feature Engineering and Data Preparation/002 Introduction to Feature Engineering and Data Preparation.mp4
40.68MB
11 Feature Engineering and Data Preparation/003 Dealing with Outliers.mp4
120.68MB
11 Feature Engineering and Data Preparation/004 Dealing with Missing Data _ Part One - Evaluation of Missing Data.mp4
31.43MB
11 Feature Engineering and Data Preparation/005 Dealing with Missing Data _ Part Two - Filling or Dropping data based on Rows.mp4
117.6MB
11 Feature Engineering and Data Preparation/006 Dealing with Missing Data _ Part 3 - Fixing data based on Columns.mp4
105.28MB
11 Feature Engineering and Data Preparation/007 Dealing with Categorical Data - Encoding Options.mp4
58.93MB
12 Cross Validation , Grid Search, and the Linear Regression Project/001 Section Overview and Introduction.mp4
9.95MB
12 Cross Validation , Grid Search, and the Linear Regression Project/002 Cross Validation - Test _ Train Split.mp4
46.89MB
12 Cross Validation , Grid Search, and the Linear Regression Project/003 Cross Validation - Test _ Validation _ Train Split.mp4
59.45MB
12 Cross Validation , Grid Search, and the Linear Regression Project/004 Cross Validation - cross_val_score.mp4
44.51MB
12 Cross Validation , Grid Search, and the Linear Regression Project/005 Cross Validation - cross_validate.mp4
45.08MB
12 Cross Validation , Grid Search, and the Linear Regression Project/006 Grid Search.mp4
73.22MB
12 Cross Validation , Grid Search, and the Linear Regression Project/007 Linear Regression Project Overview.mp4
23.55MB
12 Cross Validation , Grid Search, and the Linear Regression Project/008 Linear Regression Project - Solutions.mp4
91.17MB
13 Logistic Regression/002 Introduction to Logistic Regression Section.mp4
13.94MB
13 Logistic Regression/003 Logistic Regression - Theory and Intuition - Part One_ The Logistic Function.mp4
17.35MB
13 Logistic Regression/004 Logistic Regression - Theory and Intuition - Part Two_ Linear to Logistic.mp4
11.07MB
13 Logistic Regression/005 Logistic Regression - Theory and Intuition - Linear to Logistic Math.mp4
36.05MB
13 Logistic Regression/006 Logistic Regression - Theory and Intuition - Best fit with Maximum Likelihood.mp4
54.89MB
13 Logistic Regression/007 Logistic Regression with Scikit-Learn - Part One - EDA.mp4
62.6MB
13 Logistic Regression/008 Logistic Regression with Scikit-Learn - Part Two - Model Training.mp4
32.57MB
13 Logistic Regression/009 Classification Metrics - Confusion Matrix and Accuracy.mp4
21.72MB
13 Logistic Regression/010 Classification Metrics - Precison, Recall, F1-Score.mp4
23.42MB
13 Logistic Regression/011 Classification Metrics - ROC Curves.mp4
16.09MB
13 Logistic Regression/012 Logistic Regression with Scikit-Learn - Part Three - Performance Evaluation.mp4
63.65MB
13 Logistic Regression/013 Multi-Class Classification with Logistic Regression - Part One - Data and EDA.mp4
37.38MB
13 Logistic Regression/014 Multi-Class Classification with Logistic Regression - Part Two - Model.mp4
105.09MB
13 Logistic Regression/015 Logistic Regression Exercise Project Overview.mp4
24.32MB
13 Logistic Regression/016 Logistic Regression Project Exercise - Solutions.mp4
145.55MB
14 KNN - K Nearest Neighbors/001 Introduction to KNN Section.mp4
4.97MB
14 KNN - K Nearest Neighbors/002 KNN Classification - Theory and Intuition.mp4
23.56MB
14 KNN - K Nearest Neighbors/003 KNN Coding with Python - Part One.mp4
61.61MB
14 KNN - K Nearest Neighbors/004 KNN Coding with Python - Part Two - Choosing K.mp4
102.92MB
14 KNN - K Nearest Neighbors/005 KNN Classification Project Exercise Overview.mp4
21.1MB
14 KNN - K Nearest Neighbors/006 KNN Classification Project Exercise Solutions.mp4
105.05MB
15 Support Vector Machines/001 Introduction to Support Vector Machines.mp4
4.34MB
15 Support Vector Machines/002 History of Support Vector Machines.mp4
15.55MB
15 Support Vector Machines/003 SVM - Theory and Intuition - Hyperplanes and Margins.mp4
35.31MB
15 Support Vector Machines/004 SVM - Theory and Intuition - Kernel Intuition.mp4
13.36MB
15 Support Vector Machines/005 SVM - Theory and Intuition - Kernel Trick and Mathematics.mp4
52.69MB
15 Support Vector Machines/006 SVM with Scikit-Learn and Python - Classification Part One.mp4
46.29MB
15 Support Vector Machines/007 SVM with Scikit-Learn and Python - Classification Part Two.mp4
83.18MB
15 Support Vector Machines/008 SVM with Scikit-Learn and Python - Regression Tasks.mp4
76.32MB
15 Support Vector Machines/009 Support Vector Machine Project Overview.mp4
34.83MB
15 Support Vector Machines/010 Support Vector Machine Project Solutions.mp4
93.45MB
16 Tree Based Methods_ Decision Tree Learning/001 Introduction to Tree Based Methods.mp4
2.61MB
16 Tree Based Methods_ Decision Tree Learning/002 Decision Tree - History.mp4
35.59MB
16 Tree Based Methods_ Decision Tree Learning/003 Decision Tree - Terminology.mp4
6.34MB
16 Tree Based Methods_ Decision Tree Learning/004 Decision Tree - Understanding Gini Impurity.mp4
19.47MB
16 Tree Based Methods_ Decision Tree Learning/005 Constructing Decision Trees with Gini Impurity - Part One.mp4
17.72MB
16 Tree Based Methods_ Decision Tree Learning/006 Constructing Decision Trees with Gini Impurity - Part Two.mp4
28.21MB
16 Tree Based Methods_ Decision Tree Learning/007 Coding Decision Trees - Part One - The Data.mp4
98.73MB
16 Tree Based Methods_ Decision Tree Learning/008 Coding Decision Trees - Part Two -Creating the Model.mp4
115.85MB
17 Random Forests/001 Introduction to Random Forests Section.mp4
4.1MB
17 Random Forests/002 Random Forests - History and Motivation.mp4
24.01MB
17 Random Forests/003 Random Forests - Key Hyperparameters.mp4
9.6MB
17 Random Forests/004 Random Forests - Number of Estimators and Features in Subsets.mp4
27.33MB
17 Random Forests/005 Random Forests - Bootstrapping and Out-of-Bag Error.mp4
43.38MB
17 Random Forests/006 Coding Classification with Random Forest Classifier - Part One.mp4
52.11MB
17 Random Forests/007 Coding Classification with Random Forest Classifier - Part Two.mp4
130.38MB
17 Random Forests/008 Coding Regression with Random Forest Regressor - Part One - Data.mp4
13.71MB
17 Random Forests/009 Coding Regression with Random Forest Regressor - Part Two - Basic Models.mp4
84.92MB
17 Random Forests/010 Coding Regression with Random Forest Regressor - Part Three - Polynomials.mp4
45.61MB
17 Random Forests/011 Coding Regression with Random Forest Regressor - Part Four - Advanced Models.mp4
50.66MB
18 Boosting Methods/001 Introduction to Boosting Section.mp4
4.11MB
18 Boosting Methods/002 Boosting Methods - Motivation and History.mp4
21.97MB
18 Boosting Methods/003 AdaBoost Theory and Intuition.mp4
41.55MB
18 Boosting Methods/004 AdaBoost Coding Part One - The Data.mp4
22.77MB
18 Boosting Methods/005 AdaBoost Coding Part Two - The Model.mp4
63.12MB
18 Boosting Methods/006 Gradient Boosting Theory.mp4
22.96MB
18 Boosting Methods/007 Gradient Boosting Coding Walkthrough.mp4
57.98MB
19 Supervised Learning Capstone Project - Cohort Analysis and Tree Based Methods/001 Introduction to Supervised Learning Capstone Project.mp4
73.3MB
20 Naive Bayes Classification and Natural Language Processing (Supervised Learning)/001 Introduction to NLP and Naive Bayes Section.mp4
6.75MB
20 Naive Bayes Classification and Natural Language Processing (Supervised Learning)/002 Naive Bayes Algorithm - Part One - Bayes Theorem.mp4
22.04MB
20 Naive Bayes Classification and Natural Language Processing (Supervised Learning)/003 Naive Bayes Algorithm - Part Two - Model Algorithm.mp4
48.64MB
20 Naive Bayes Classification and Natural Language Processing (Supervised Learning)/009 Text Classification Project Exercise Overview.mp4
30.53MB
20 Naive Bayes Classification and Natural Language Processing (Supervised Learning)/010 Text Classification Project Exercise Solutions.mp4
108.07MB
21 Unsupervised Learning/001 Unsupervised Learning Overview.mp4
31.73MB
22 K-Means Clustering/001 Introduction to K-Means Clustering Section.mp4
4.57MB
22 K-Means Clustering/002 Clustering General Overview.mp4
24.89MB
22 K-Means Clustering/003 K-Means Clustering Theory.mp4
52.36MB
22 K-Means Clustering/004 K-Means Clustering - Coding Part One.mp4
97.51MB
22 K-Means Clustering/005 K-Means Clustering Coding Part Two.mp4
80.63MB
22 K-Means Clustering/006 K-Means Clustering Coding Part Three.mp4
59.54MB
22 K-Means Clustering/007 K-Means Color Quantization - Part One.mp4
80.36MB
22 K-Means Clustering/008 K-Means Color Quantization - Part Two.mp4
64.75MB
22 K-Means Clustering/009 K-Means Clustering Exercise Overview.mp4
59.33MB
22 K-Means Clustering/010 K-Means Clustering Exercise Solution - Part One.mp4
79.72MB
22 K-Means Clustering/011 K-Means Clustering Exercise Solution - Part Two.mp4
107.89MB
22 K-Means Clustering/012 K-Means Clustering Exercise Solution - Part Three.mp4
62.47MB
23 Hierarchical Clustering/001 Introduction to Hierarchical Clustering.mp4
5.81MB
23 Hierarchical Clustering/002 Hierarchical Clustering - Theory and Intuition.mp4
51.94MB
23 Hierarchical Clustering/003 Hierarchical Clustering - Coding Part One - Data and Visualization.mp4
114.83MB
23 Hierarchical Clustering/004 Hierarchical Clustering - Coding Part Two - Scikit-Learn.mp4
208.67MB
24 DBSCAN - Density-based spatial clustering of applications with noise/001 Introduction to DBSCAN Section.mp4
5.92MB
24 DBSCAN - Density-based spatial clustering of applications with noise/002 DBSCAN - Theory and Intuition.mp4
109.1MB
24 DBSCAN - Density-based spatial clustering of applications with noise/003 DBSCAN versus K-Means Clustering.mp4
66.74MB
24 DBSCAN - Density-based spatial clustering of applications with noise/004 DBSCAN - Hyperparameter Theory.mp4
16.46MB
24 DBSCAN - Density-based spatial clustering of applications with noise/005 DBSCAN - Hyperparameter Tuning Methods.mp4
105.09MB
24 DBSCAN - Density-based spatial clustering of applications with noise/006 DBSCAN - Outlier Project Exercise Overview.mp4
50.18MB
24 DBSCAN - Density-based spatial clustering of applications with noise/007 DBSCAN - Outlier Project Exercise Solutions.mp4
127.96MB
25 PCA - Principal Component Analysis and Manifold Learning/001 Introduction to Principal Component Analysis.mp4
6.15MB
25 PCA - Principal Component Analysis and Manifold Learning/002 PCA Theory and Intuition - Part One.mp4
29.73MB
25 PCA - Principal Component Analysis and Manifold Learning/003 PCA Theory and Intuition - Part Two.mp4
19.06MB
25 PCA - Principal Component Analysis and Manifold Learning/004 PCA - Manual Implementation in Python.mp4
95.14MB
25 PCA - Principal Component Analysis and Manifold Learning/005 PCA - SciKit-Learn.mp4
74.1MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统