首页 磁力链接怎么用

[DesireCourse.Net] Udemy - Deploy Machine Learning & NLP Models with Dockers (DevOps)

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2021-7-26 00:26 2025-1-26 19:50 345 2.15 GB 54
二维码链接
[DesireCourse.Net] Udemy - Deploy Machine Learning & NLP Models with Dockers (DevOps)的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Course Overview/1. Introduction.mp410.46MB
  2. 1. Course Overview/2. I have a model. Now what.mp46.09MB
  3. 1. Course Overview/3. Skills Checklist.mp47.41MB
  4. 1. Course Overview/4. Learning Goals.mp44.3MB
  5. 2. Docker basics/1. Why docker.mp420.39MB
  6. 2. Docker basics/2. What are docker containers.mp412.05MB
  7. 2. Docker basics/3. Importance of docker containers in machine learning.mp414.79MB
  8. 2. Docker basics/4. Where devops meets data science.mp411.62MB
  9. 2. Docker basics/5. Summary.mp42.05MB
  10. 3. Flask basics/1. Introduction.mp44.09MB
  11. 3. Flask basics/2. Setting up a Flask Project.mp49.19MB
  12. 3. Flask basics/3. Simple Flask API to add two numbers.mp436.45MB
  13. 3. Flask basics/4. Taking user input with GET requests.mp433.46MB
  14. 3. Flask basics/5. POST request with Flask.mp447.95MB
  15. 3. Flask basics/6. Using Flask in the context of Machine Learning.mp430.27MB
  16. 4. Exposing a Random Forest Machine Learning service as an API/1. Introduction.mp43.94MB
  17. 4. Exposing a Random Forest Machine Learning service as an API/2. API & Dataset Overview.mp47.58MB
  18. 4. Exposing a Random Forest Machine Learning service as an API/3. Training the Random Forest model.mp445.78MB
  19. 4. Exposing a Random Forest Machine Learning service as an API/4. Pickling the Random Forest model.mp433.86MB
  20. 4. Exposing a Random Forest Machine Learning service as an API/5. Exposing the Random Forest model as a Flask API.mp454.26MB
  21. 4. Exposing a Random Forest Machine Learning service as an API/6. Testing the API model.mp436.61MB
  22. 4. Exposing a Random Forest Machine Learning service as an API/7. Providing file input to Flask API.mp475.71MB
  23. 4. Exposing a Random Forest Machine Learning service as an API/8. Flasgger for autogenerating UI.mp485.17MB
  24. 4. Exposing a Random Forest Machine Learning service as an API/9. Summary.mp413.49MB
  25. 5. Writing and building the Dockerfile/1. Introduction.mp42.22MB
  26. 5. Writing and building the Dockerfile/2. Base Image & FROM command.mp414.76MB
  27. 5. Writing and building the Dockerfile/3. COPY and EXPOSE commands.mp421.74MB
  28. 5. Writing and building the Dockerfile/4. WORKDIR, RUN and CMD commands.mp429.55MB
  29. 5. Writing and building the Dockerfile/5. Preparing the flask scripts for dockerizing.mp421.59MB
  30. 5. Writing and building the Dockerfile/6. Writing the Dockerfile.mp445.99MB
  31. 5. Writing and building the Dockerfile/7. Building the docker image.mp474.79MB
  32. 5. Writing and building the Dockerfile/8. Running the Random Forest model on Docker.mp478.73MB
  33. 6. Building a production grade Docker application/1. Introduction.mp426.52MB
  34. 6. Building a production grade Docker application/2. Overall Architecture.mp423.62MB
  35. 6. Building a production grade Docker application/3. Configuring the WSGI file.mp462.43MB
  36. 6. Building a production grade Docker application/4. Writing a production grade Dockerfile.mp461.41MB
  37. 6. Building a production grade Docker application/5. Running and debugging a docker container in production.mp486.01MB
  38. 7. Building NLP based Text Clustering application/1. Introduction.mp418.13MB
  39. 7. Building NLP based Text Clustering application/2. Stemming & Lemmatization for cleaner text.mp490.87MB
  40. 7. Building NLP based Text Clustering application/3. Converting unstructured to structured data.mp495.68MB
  41. 7. Building NLP based Text Clustering application/4. KMeans Clustering.mp482.2MB
  42. 7. Building NLP based Text Clustering application/5. Preparing the excel output.mp4108.84MB
  43. 7. Building NLP based Text Clustering application/6. Making the output Downloadable.mp465.5MB
  44. 7. Building NLP based Text Clustering application/7. Finding top keywords for kmeans clusters.mp474.96MB
  45. 7. Building NLP based Text Clustering application/8. Final output with charts.mp476.39MB
  46. 7. Building NLP based Text Clustering application/9. Summary.mp416.46MB
  47. 8. API for image recognition with deep learning/1. Introduction.mp45.07MB
  48. 8. API for image recognition with deep learning/2. Visualizing the input images.mp468.33MB
  49. 8. API for image recognition with deep learning/3. Preparing the input images.mp489.54MB
  50. 8. API for image recognition with deep learning/4. Building the deep learning model.mp493.14MB
  51. 8. API for image recognition with deep learning/5. Training and saving the trained deep learning model.mp431.02MB
  52. 8. API for image recognition with deep learning/6. Generating test images.mp434.23MB
  53. 8. API for image recognition with deep learning/7. Flask API wrapper for making predictions.mp478.29MB
  54. 8. API for image recognition with deep learning/8. Summary.mp418.42MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统