首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[Tutorialsplanet.NET] Udemy - The Complete Neural Networks Bootcamp Theory, Applications
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2023-2-12 00:36
2024-11-20 01:39
216
18.78 GB
277
磁力链接
magnet:?xt=urn:btih:43f148d4ac20cc5bf65b0efeac89ffd575208065
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOjQzZjE0OGQ0YWMyMGNjNWJmNjViMGVmZWFjODlmZmQ1NzUyMDgwNjVaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
Tutorialsplanet
NET
Udemy
-
The
Complete
Neural
Networks
Bootcamp
Theory
Applications
文件列表
1. How Neural Networks and Backpropagation Works/1. What Can Deep Learning Do.mp4
156.25MB
1. How Neural Networks and Backpropagation Works/2. The Rise of Deep Learning.mp4
41.8MB
1. How Neural Networks and Backpropagation Works/3. The Essence of Neural Networks.mp4
49.99MB
1. How Neural Networks and Backpropagation Works/4. The Perceptron.mp4
110.88MB
1. How Neural Networks and Backpropagation Works/5. Gradient Descent.mp4
40.6MB
1. How Neural Networks and Backpropagation Works/6. The Forward Propagation.mp4
52.23MB
1. How Neural Networks and Backpropagation Works/7. Backpropagation Part 1.mp4
29.37MB
1. How Neural Networks and Backpropagation Works/8. Backpropagation Part 2.mp4
27.82MB
10. Visualize the Learning Process/1. Visualize Learning Part 1.mp4
24.38MB
10. Visualize the Learning Process/2. Visualize Learning Part 2.mp4
12.21MB
10. Visualize the Learning Process/3. Visualize Learning Part 3.mp4
27.37MB
10. Visualize the Learning Process/4. Visualize Learning Part 4.mp4
20.1MB
10. Visualize the Learning Process/5. Visualize Learning Part 5.mp4
71.66MB
10. Visualize the Learning Process/6. Visualize Learning Part 6.mp4
64.39MB
10. Visualize the Learning Process/7. Neural Networks Playground.mp4
32.52MB
11. Implementing a Neural Network from Scratch with Numpy/1. The Dataset and Hyperparameters.mp4
70.53MB
11. Implementing a Neural Network from Scratch with Numpy/2. Understanding the Implementation.mp4
23.4MB
11. Implementing a Neural Network from Scratch with Numpy/3. Forward Propagation.mp4
85.2MB
11. Implementing a Neural Network from Scratch with Numpy/4. Loss Function.mp4
68.48MB
11. Implementing a Neural Network from Scratch with Numpy/5. Prediction.mp4
27.71MB
11. Implementing a Neural Network from Scratch with Numpy/6. Backpropagation Equations.mp4
98.77MB
11. Implementing a Neural Network from Scratch with Numpy/7. Backpropagation.mp4
148.09MB
11. Implementing a Neural Network from Scratch with Numpy/8. Initializing the Network.mp4
58.9MB
11. Implementing a Neural Network from Scratch with Numpy/9. Training the Model.mp4
47.19MB
12. Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/1. Code Details.mp4
31.94MB
12. Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/2. Importing and Defining Parameters.mp4
142.18MB
12. Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/3. Defining the Network Class.mp4
85.95MB
12. Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/4. Creating the network class and the network functions.mp4
56.2MB
12. Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/5. Training the Network.mp4
333.24MB
12. Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/6. Testing the Network.mp4
47.1MB
13. Convolutional Neural Networks/1. Prerequisite Filters.mp4
36.41MB
13. Convolutional Neural Networks/10. Important formulas.mp4
13.38MB
13. Convolutional Neural Networks/11. CNN Characteristics.mp4
45.88MB
13. Convolutional Neural Networks/12. Regularization and Batch Normalization in CNNs.mp4
18.19MB
13. Convolutional Neural Networks/13. DropBlock Dropout in CNNs.mp4
99.51MB
13. Convolutional Neural Networks/14. Softmax with Temperature.mp4
27.35MB
13. Convolutional Neural Networks/2. Introduction to Convolutional Networks and the need for them.mp4
25.12MB
13. Convolutional Neural Networks/3. Filters and Features.mp4
51.93MB
13. Convolutional Neural Networks/4. Convolution over Volume Animation.mp4
21.31MB
13. Convolutional Neural Networks/5. More on Convolutions.mp4
29.98MB
13. Convolutional Neural Networks/6. Quiz Solution Discussion.mp4
5.87MB
13. Convolutional Neural Networks/7. A Tool for Convolution Visualization.mp4
27.97MB
13. Convolutional Neural Networks/8. Activation, Pooling and FC.mp4
80.68MB
13. Convolutional Neural Networks/9. CNN Visualization.mp4
15.41MB
14. Practical Convolutional Networks in PyTorch - Image Classification/1. Loading and Normalizing the Dataset.mp4
52.57MB
14. Practical Convolutional Networks in PyTorch - Image Classification/10. Classifying your own Handwritten images.mp4
55.66MB
14. Practical Convolutional Networks in PyTorch - Image Classification/2. Visualizing and Loading the Dataset.mp4
60.74MB
14. Practical Convolutional Networks in PyTorch - Image Classification/3. Building the CNN.mp4
251.43MB
14. Practical Convolutional Networks in PyTorch - Image Classification/4. Defining the Model.mp4
18.68MB
14. Practical Convolutional Networks in PyTorch - Image Classification/5. Understanding the Propagation.mp4
26.19MB
14. Practical Convolutional Networks in PyTorch - Image Classification/6. Training the CNN.mp4
131.06MB
14. Practical Convolutional Networks in PyTorch - Image Classification/7. Testing the CNN.mp4
35.82MB
14. Practical Convolutional Networks in PyTorch - Image Classification/8. Plotting and Putting into Action.mp4
45.32MB
14. Practical Convolutional Networks in PyTorch - Image Classification/9. Predicting an image.mp4
17.46MB
15. CNN Architectures/1. CNN Architectures Part 1.mp4
43.87MB
15. CNN Architectures/2. Residual Networks Part 1.mp4
122.27MB
15. CNN Architectures/3. Residual Networks Part 2.mp4
151.37MB
15. CNN Architectures/4. CNN Architectures Part 2.mp4
13.38MB
15. CNN Architectures/5. Densely Connected Networks.mp4
95.14MB
15. CNN Architectures/6. Squeeze-Excite Networks.mp4
39.6MB
15. CNN Architectures/7. Seperable Convolutions.mp4
60.51MB
15. CNN Architectures/8. Transfer Learning.mp4
29.24MB
16. Practical Residual Networks in PyTorch/1. Practical ResNet Part 1.mp4
71.51MB
16. Practical Residual Networks in PyTorch/2. Practical ResNet Part 2.mp4
85.73MB
16. Practical Residual Networks in PyTorch/3. Practical ResNet Part 3.mp4
103.17MB
16. Practical Residual Networks in PyTorch/4. Practical ResNet Part 4.mp4
143.28MB
17. Transposed Convolutions/1. Introduction to Transposed Convolutions.mp4
30.98MB
17. Transposed Convolutions/2. Convolution Operation as Matrix Multiplication.mp4
70.98MB
17. Transposed Convolutions/3. Transposed Convolutions.mp4
36.09MB
18. Transfer Learning in PyTorch - Image Classification/1. Data Augmentation.mp4
224.61MB
18. Transfer Learning in PyTorch - Image Classification/2. Loading the Dataset.mp4
177.38MB
18. Transfer Learning in PyTorch - Image Classification/3. Modifying the Network.mp4
96.99MB
18. Transfer Learning in PyTorch - Image Classification/4. Understanding the data.mp4
101.76MB
18. Transfer Learning in PyTorch - Image Classification/5. Finetuning the Network.mp4
50.02MB
18. Transfer Learning in PyTorch - Image Classification/6. Testing and Visualizing the results.mp4
118.43MB
19. Convolutional Networks Visualization/1. Data and the Model.mp4
74.39MB
19. Convolutional Networks Visualization/2. Processing the Model.mp4
142.48MB
19. Convolutional Networks Visualization/3. Visualizing the Feature Maps.mp4
133.26MB
2. Loss Functions/1. Mean Squared Error (MSE).mp4
19.82MB
2. Loss Functions/10. Triplet Ranking Loss.mp4
125.7MB
2. Loss Functions/2. L1 Loss (MAE).mp4
77.21MB
2. Loss Functions/3. Huber Loss.mp4
28.65MB
2. Loss Functions/4. Binary Cross Entropy Loss.mp4
44.94MB
2. Loss Functions/5. Cross Entropy Loss.mp4
24.66MB
2. Loss Functions/6. Softmax Function.mp4
44.73MB
2. Loss Functions/7. KL divergence Loss.mp4
25.4MB
2. Loss Functions/8. Contrastive Loss.mp4
62.66MB
2. Loss Functions/9. Hinge Loss.mp4
67.43MB
20. YOLO Object Detection (Theory)/1. YOLO Theory Part 1.mp4
133.82MB
20. YOLO Object Detection (Theory)/10. YOLO Theory Part 10.mp4
25.29MB
20. YOLO Object Detection (Theory)/11. YOLO Theory Part 11.mp4
52.8MB
20. YOLO Object Detection (Theory)/12. YOLO Theory Part 12.mp4
58.28MB
20. YOLO Object Detection (Theory)/2. YOLO Theory Part 2.mp4
80.65MB
20. YOLO Object Detection (Theory)/3. YOLO Theory Part 3.mp4
123.91MB
20. YOLO Object Detection (Theory)/4. YOLO Theory Part 4.mp4
25.77MB
20. YOLO Object Detection (Theory)/5. YOLO Theory Part 5.mp4
104.97MB
20. YOLO Object Detection (Theory)/6. YOLO Theory Part 6.mp4
123.77MB
20. YOLO Object Detection (Theory)/7. YOLO Theory Part 7.mp4
69.72MB
20. YOLO Object Detection (Theory)/8. YOLO Theory Part 8.mp4
77.19MB
20. YOLO Object Detection (Theory)/9. YOLO Theory Part 9.mp4
17.69MB
21. Autoencoders and Variational Autoencoders/1. Autoencoders.mp4
42.08MB
21. Autoencoders and Variational Autoencoders/2. Denoising Autoencoders.mp4
30MB
21. Autoencoders and Variational Autoencoders/3. The Problem in Autoencoders.mp4
13.42MB
21. Autoencoders and Variational Autoencoders/4. Variational Autoencoders.mp4
70.2MB
21. Autoencoders and Variational Autoencoders/5. Probability Distributions Recap.mp4
259.26MB
21. Autoencoders and Variational Autoencoders/6. Loss Function Derivation for VAE.mp4
319.16MB
21. Autoencoders and Variational Autoencoders/7. Deep Fake.mp4
85.25MB
22. Practical Variational Autoencoders in PyTorch/1. Practical VAE Part 1.mp4
101.17MB
22. Practical Variational Autoencoders in PyTorch/2. Practical VAE Part 2.mp4
103.79MB
22. Practical Variational Autoencoders in PyTorch/3. Practical VAE Part 3.mp4
93.22MB
23. Neural Style Transfer/1. NST Theory Part 1.mp4
52.53MB
23. Neural Style Transfer/2. NST Theory Part 2.mp4
35.19MB
23. Neural Style Transfer/3. NST Theory Part 3.mp4
69.11MB
24. Practical Neural Style Transfer in PyTorch/1. NST Practical Part 1.mp4
63.78MB
24. Practical Neural Style Transfer in PyTorch/2. NST Practical Part 2.mp4
127.87MB
24. Practical Neural Style Transfer in PyTorch/3. NST Practical Part 3.mp4
105.89MB
24. Practical Neural Style Transfer in PyTorch/4. NST Practical Part 4.mp4
130.96MB
24. Practical Neural Style Transfer in PyTorch/5. Fast Neural Style Transfer.mp4
44.83MB
25. Recurrent Neural Networks/1. Why do we need RNNs.mp4
18.62MB
25. Recurrent Neural Networks/10. CNN-LSTM.mp4
21.45MB
25. Recurrent Neural Networks/2. Vanilla RNNs.mp4
51.57MB
25. Recurrent Neural Networks/3. Quiz Solution Discussion.mp4
15.38MB
25. Recurrent Neural Networks/4. Backpropagation Through Time.mp4
61.56MB
25. Recurrent Neural Networks/5. Stacked RNNs.mp4
7.77MB
25. Recurrent Neural Networks/6. Vanishing and Exploding Gradient Problem.mp4
66.86MB
25. Recurrent Neural Networks/7. LSTMs.mp4
111.65MB
25. Recurrent Neural Networks/8. Bidirectional RNNs.mp4
15.03MB
25. Recurrent Neural Networks/9. GRUs.mp4
26.15MB
26. Word Embeddings/1. What are Word Embeddings.mp4
72.71MB
26. Word Embeddings/2. Visualizing Word Embeddings.mp4
12.19MB
26. Word Embeddings/3. Measuring Word Embeddings.mp4
5.53MB
26. Word Embeddings/4. Word Embeddings Models.mp4
10.65MB
26. Word Embeddings/5. Word Embeddings in PyTorch.mp4
53.24MB
27. Practical Recurrent Networks in PyTorch/1. Creating the Dictionary.mp4
59.88MB
27. Practical Recurrent Networks in PyTorch/2. Processing the Text.mp4
108.66MB
27. Practical Recurrent Networks in PyTorch/3. Defining and Visualizing the Parameters.mp4
69.54MB
27. Practical Recurrent Networks in PyTorch/4. Creating the Network.mp4
112.1MB
27. Practical Recurrent Networks in PyTorch/5. Training the Network.mp4
151.65MB
27. Practical Recurrent Networks in PyTorch/6. Generating Text.mp4
177.83MB
28. Saving and Loading Models/1. Saving and Loading Part 1.mp4
130.61MB
28. Saving and Loading Models/2. Saving and Loading Part 2.mp4
96.57MB
28. Saving and Loading Models/3. Saving and Loading Part 3.mp4
52.79MB
29. Sequence Modelling/1. Sequence Modeling.mp4
81.57MB
29. Sequence Modelling/2. Image Captioning.mp4
34.74MB
29. Sequence Modelling/3. Attention Mechanisms.mp4
16.49MB
29. Sequence Modelling/4. How Attention Mechanisms Work.mp4
40.15MB
3. Activation Functions/1. Why we need activation functions.mp4
22.45MB
3. Activation Functions/2. Sigmoid Activation.mp4
20.16MB
3. Activation Functions/3. Tanh Activation.mp4
13.87MB
3. Activation Functions/4. ReLU and PReLU.mp4
20.77MB
3. Activation Functions/5. Exponentially Linear Units (ELU).mp4
10.64MB
3. Activation Functions/6. Gated Linear Units (GLU).mp4
26.52MB
3. Activation Functions/7. Swish Activation.mp4
12.87MB
3. Activation Functions/8. Mish Activation.mp4
38.14MB
30. Practical Sequence Modelling in PyTorch Chatbot Application/1. Introduction.mp4
74.44MB
30. Practical Sequence Modelling in PyTorch Chatbot Application/2. Understanding the Encoder.mp4
92.74MB
30. Practical Sequence Modelling in PyTorch Chatbot Application/3. Defining the Encoder.mp4
404.31MB
30. Practical Sequence Modelling in PyTorch Chatbot Application/4. Understanding Pack Padded Sequence.mp4
29.21MB
30. Practical Sequence Modelling in PyTorch Chatbot Application/5. Designing the Attention Model.mp4
260.29MB
30. Practical Sequence Modelling in PyTorch Chatbot Application/6. Designing the Decoder Part 1.mp4
139.29MB
30. Practical Sequence Modelling in PyTorch Chatbot Application/7. Designing the Decoder Part 2.mp4
176.14MB
30. Practical Sequence Modelling in PyTorch Chatbot Application/8. Teacher Forcing.mp4
21.72MB
31. Practical Sequence Modelling in PyTorch Image Captioning/1. Implementation Details.mp4
50.34MB
31. Practical Sequence Modelling in PyTorch Image Captioning/10. Train Function.mp4
158.91MB
31. Practical Sequence Modelling in PyTorch Image Captioning/11. Defining Hyperparameters.mp4
104.79MB
31. Practical Sequence Modelling in PyTorch Image Captioning/12. Evaluation Function.mp4
90.6MB
31. Practical Sequence Modelling in PyTorch Image Captioning/13. Training.mp4
12.85MB
31. Practical Sequence Modelling in PyTorch Image Captioning/14. Results.mp4
33.86MB
31. Practical Sequence Modelling in PyTorch Image Captioning/2. Utility Functions.mp4
41.36MB
31. Practical Sequence Modelling in PyTorch Image Captioning/3. Accuracy Calculation.mp4
74.06MB
31. Practical Sequence Modelling in PyTorch Image Captioning/4. Constructing the Dataset Part 1.mp4
136.13MB
31. Practical Sequence Modelling in PyTorch Image Captioning/5. Constructing the Dataset Part 2.mp4
56.91MB
31. Practical Sequence Modelling in PyTorch Image Captioning/6. Creating the Encoder.mp4
84.85MB
31. Practical Sequence Modelling in PyTorch Image Captioning/7. Creating the Decoder Part 1.mp4
118.19MB
31. Practical Sequence Modelling in PyTorch Image Captioning/8. Creating the Decoder Part 2.mp4
97.47MB
31. Practical Sequence Modelling in PyTorch Image Captioning/9. Creating the Decoder Part 3.mp4
131.05MB
32. Transformers/1. Introduction to Transformers.mp4
46.69MB
32. Transformers/10. Masked MultiHead Attention.mp4
26.69MB
32. Transformers/11. MultiHead Attention in Decoder.mp4
11.07MB
32. Transformers/12. Cross Entropy Loss.mp4
32.68MB
32. Transformers/13. KL Divergence Loss.mp4
23.59MB
32. Transformers/14. Label Smoothing.mp4
13.21MB
32. Transformers/15. Dropout.mp4
75.25MB
32. Transformers/16. Learning Rate Warmup.mp4
29.07MB
32. Transformers/2. Input Embeddings.mp4
65.76MB
32. Transformers/3. Positional Encoding.mp4
95.97MB
32. Transformers/4. MultiHead Attention Part 1.mp4
58.32MB
32. Transformers/5. MultiHead Attention Part 2.mp4
45.85MB
32. Transformers/6. Concat and Linear.mp4
9.77MB
32. Transformers/7. Residual Learning.mp4
28.02MB
32. Transformers/8. Layer Normalization.mp4
21.79MB
32. Transformers/9. Feed Forward.mp4
15.53MB
33. Build a Chatbot with Transformers/1. Dataset Preprocessing Part 1.mp4
83.35MB
33. Build a Chatbot with Transformers/10. MultiHead Attention Implementation Part 3.mp4
123.48MB
33. Build a Chatbot with Transformers/11. Feed Forward Implementation.mp4
42.91MB
33. Build a Chatbot with Transformers/12. Encoder Layer.mp4
86.66MB
33. Build a Chatbot with Transformers/13. Decoder Layer.mp4
62.27MB
33. Build a Chatbot with Transformers/14. Transformer.mp4
117.13MB
33. Build a Chatbot with Transformers/15. AdamWarmup.mp4
75.29MB
33. Build a Chatbot with Transformers/16. Loss with Label Smoothing.mp4
214.69MB
33. Build a Chatbot with Transformers/17. Defining the Model.mp4
43.71MB
33. Build a Chatbot with Transformers/18. Training Function.mp4
100.55MB
33. Build a Chatbot with Transformers/19. Evaluation Function.mp4
109.81MB
33. Build a Chatbot with Transformers/2. Dataset Preprocessing Part 2.mp4
134.64MB
33. Build a Chatbot with Transformers/20. Main Function and User Evaluation.mp4
93.28MB
33. Build a Chatbot with Transformers/21. Action.mp4
32.24MB
33. Build a Chatbot with Transformers/3. Dataset Preprocessing Part 3.mp4
80.05MB
33. Build a Chatbot with Transformers/4. Dataset Preprocessing Part 4.mp4
20.34MB
33. Build a Chatbot with Transformers/5. Dataset Preprocessing Part 5.mp4
92.39MB
33. Build a Chatbot with Transformers/6. Data Loading and Masking.mp4
75.82MB
33. Build a Chatbot with Transformers/7. Embeddings.mp4
81.22MB
33. Build a Chatbot with Transformers/8. MultiHead Attention Implementation Part 1.mp4
60.43MB
33. Build a Chatbot with Transformers/9. MultiHead Attention Implementation Part 2.mp4
51.41MB
34. Universal Transformers/1. Universal Transformers.mp4
21.83MB
34. Universal Transformers/2. Practical Universal Transformers Modifying the Transformers code.mp4
161.1MB
34. Universal Transformers/3. Transformers for other tasks.mp4
112.79MB
35. Google Colab and Gradient Accumulation/1. Running your models on Google Colab.mp4
33.18MB
35. Google Colab and Gradient Accumulation/2. Gradient Accumulation.mp4
56.83MB
36. BERT/1. What is BERT and its structure.mp4
34.67MB
36. BERT/2. Masked Language Modelling.mp4
23.09MB
36. BERT/3. Next Sentence Prediction.mp4
42.59MB
36. BERT/4. Fine-tuning BERT.mp4
50.66MB
36. BERT/5. Exploring Transformers.mp4
136.61MB
37. Vision Transformers/1. Vision Transformer Part 1.mp4
85.28MB
37. Vision Transformers/2. Vision Transformer Part 2.mp4
35.31MB
37. Vision Transformers/3. Vision Transformer Part 3.mp4
106.39MB
38. GPT/1. GPT Part 1.mp4
88.85MB
38. GPT/2. GPT Part 2.mp4
45.39MB
38. GPT/3. Zero-Shot Predictions with GPT.mp4
43.41MB
38. GPT/4. Byte-Pair Encoding.mp4
39.26MB
38. GPT/5. Technical Details of GPT.mp4
51.4MB
38. GPT/6. Playing with HuggingFace models.mp4
30.23MB
4. Regularization and Normalization/1. Overfitting.mp4
26.27MB
4. Regularization and Normalization/2. L1 and L2 Regularization.mp4
33.5MB
4. Regularization and Normalization/3. Dropout.mp4
75.22MB
4. Regularization and Normalization/4. DropConnect.mp4
14.18MB
4. Regularization and Normalization/5. Normalization.mp4
13.54MB
4. Regularization and Normalization/6. Batch Normalization.mp4
100.34MB
4. Regularization and Normalization/7. Layer Normalization.mp4
45.48MB
4. Regularization and Normalization/8. Group Normalization.mp4
26.46MB
5. Optimization/1. Batch Gradient Descent.mp4
49.42MB
5. Optimization/10. SWATS - Switching from Adam to SGD.mp4
9.81MB
5. Optimization/11. Weight Decay.mp4
75.65MB
5. Optimization/12. Decoupling Weight Decay.mp4
52.25MB
5. Optimization/13. AMSGrad.mp4
85.64MB
5. Optimization/2. Stochastic Gradient Descent.mp4
18.11MB
5. Optimization/3. Mini-Batch Gradient Descent.mp4
6.94MB
5. Optimization/4. Exponentially Weighted Average Intuition.mp4
22.92MB
5. Optimization/5. Exponentially Weighted Average Implementation.mp4
43.15MB
5. Optimization/6. Bias Correction in Exponentially Weighted Averages.mp4
30.92MB
5. Optimization/7. Momentum.mp4
27.32MB
5. Optimization/8. RMSProp.mp4
38.96MB
5. Optimization/9. Adam Optimization.mp4
77.77MB
6. Hyperparameter Tuning and Learning Rate Scheduling/1. Introduction to Hyperparameter Tuning and Learning Rate Recap.mp4
17.65MB
6. Hyperparameter Tuning and Learning Rate Scheduling/2. Step Learning Rate Decay.mp4
62.86MB
6. Hyperparameter Tuning and Learning Rate Scheduling/3. Cyclic Learning Rate.mp4
69.37MB
6. Hyperparameter Tuning and Learning Rate Scheduling/4. Cosine Annealing with Warm Restarts.mp4
35.21MB
6. Hyperparameter Tuning and Learning Rate Scheduling/5. Batch Size vs Learning Rate.mp4
24.72MB
7. Weight Initialization/1. Normal Distribution.mp4
18.73MB
7. Weight Initialization/2. What happens when all weights are initialized to the same value.mp4
59.96MB
7. Weight Initialization/3. Xavier Initialization.mp4
109.71MB
7. Weight Initialization/4. He Norm Initialization.mp4
13.32MB
8. Introduction to PyTorch/1. CODE FOR THIS COURSE.mp4
1.78MB
8. Introduction to PyTorch/10. Weight Initialization in PyTorch.mp4
65.88MB
8. Introduction to PyTorch/2. Computation Graphs and Deep Learning Frameworks.mp4
55.23MB
8. Introduction to PyTorch/3. Installing PyTorch and an Introduction.mp4
99.25MB
8. Introduction to PyTorch/4. How PyTorch Works.mp4
147.44MB
8. Introduction to PyTorch/5. Torch Tensors - Part 1.mp4
87.09MB
8. Introduction to PyTorch/6. Torch Tensors - Part 2.mp4
67.94MB
8. Introduction to PyTorch/7. Numpy Bridge, Tensor Concatenation and Adding Dimensions.mp4
75.07MB
8. Introduction to PyTorch/8. Automatic Differentiation.mp4
76.4MB
8. Introduction to PyTorch/9. Loss Functions in PyTorch.mp4
222.75MB
9. Practical Neural Networks in PyTorch - Application 1 Diabetes/1. Part 1 Data Preprocessing.mp4
123.77MB
9. Practical Neural Networks in PyTorch - Application 1 Diabetes/2. Part 2 Data Normalization.mp4
55.43MB
9. Practical Neural Networks in PyTorch - Application 1 Diabetes/3. Part 3 Creating and Loading the Dataset.mp4
66.2MB
9. Practical Neural Networks in PyTorch - Application 1 Diabetes/4. Part 4 Building the Network.mp4
170.51MB
9. Practical Neural Networks in PyTorch - Application 1 Diabetes/5. Part 5 Training the Network.mp4
156.22MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统