首页 磁力链接怎么用

Unsupervised Machine Learning Hidden Markov Models in Python

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2018-10-5 19:22 2024-12-12 10:16 147 710.41 MB 49
二维码链接
Unsupervised Machine Learning Hidden Markov Models in Python的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 01 Introduction and Outline/001 Introduction and Outline Why would you want to use an HMM.mp46.78MB
  2. 01 Introduction and Outline/002 Unsupervised or Supervised.mp45.27MB
  3. 01 Introduction and Outline/003 Where to get the Code and Data.mp42.09MB
  4. 01 Introduction and Outline/004 How to Succeed in this Course.mp48.78MB
  5. 02 Markov Models/005 The Markov Property.mp48.31MB
  6. 02 Markov Models/006 Markov Models.mp48.17MB
  7. 02 Markov Models/007 The Math of Markov Chains.mp49.04MB
  8. 03 Markov Models Example Problems and Applications/008 Example Problem Sick or Healthy.mp45.54MB
  9. 03 Markov Models Example Problems and Applications/009 Example Problem Expected number of continuously sick days.mp44.63MB
  10. 03 Markov Models Example Problems and Applications/010 Example application SEO and Bounce Rate Optimization.mp415.82MB
  11. 03 Markov Models Example Problems and Applications/011 Example Application Build a 2nd-order language model and generate phrases.mp426.93MB
  12. 03 Markov Models Example Problems and Applications/012 Example Application Googles PageRank algorithm.mp48.72MB
  13. 04 Hidden Markov Models for Discrete Observations/013 From Markov Models to Hidden Markov Models.mp410.17MB
  14. 04 Hidden Markov Models for Discrete Observations/014 HMMs are Doubly Embedded.mp43.14MB
  15. 04 Hidden Markov Models for Discrete Observations/015 How can we choose the number of hidden states.mp47.34MB
  16. 04 Hidden Markov Models for Discrete Observations/016 The Forward-Backward Algorithm.mp46.78MB
  17. 04 Hidden Markov Models for Discrete Observations/017 Visual Intuition for the Forward Algorithm.mp46.03MB
  18. 04 Hidden Markov Models for Discrete Observations/018 The Viterbi Algorithm.mp45.03MB
  19. 04 Hidden Markov Models for Discrete Observations/019 Visual Intuition for the Viterbi Algorithm.mp45.73MB
  20. 04 Hidden Markov Models for Discrete Observations/020 The Baum-Welch Algorithm.mp44.35MB
  21. 04 Hidden Markov Models for Discrete Observations/021 Baum-Welch Explanation and Intuition.mp411.96MB
  22. 04 Hidden Markov Models for Discrete Observations/022 Baum-Welch Updates for Multiple Observations.mp47.48MB
  23. 04 Hidden Markov Models for Discrete Observations/023 Discrete HMM in Code.mp447.42MB
  24. 04 Hidden Markov Models for Discrete Observations/024 The underflow problem and how to solve it.mp47.65MB
  25. 04 Hidden Markov Models for Discrete Observations/025 Discrete HMM Updates in Code with Scaling.mp429.14MB
  26. 04 Hidden Markov Models for Discrete Observations/026 Scaled Viterbi Algorithm in Log Space.mp49.23MB
  27. 05 Discrete HMMs Using Deep Learning Libraries/027 Gradient Descent Tutorial.mp48.43MB
  28. 05 Discrete HMMs Using Deep Learning Libraries/028 Theano Scan Tutorial.mp423.76MB
  29. 05 Discrete HMMs Using Deep Learning Libraries/029 Discrete HMM in Theano.mp430.74MB
  30. 05 Discrete HMMs Using Deep Learning Libraries/030 Improving our Gradient Descent-Based HMM.mp48MB
  31. 05 Discrete HMMs Using Deep Learning Libraries/031 Tensorflow Scan Tutorial.mp423.07MB
  32. 05 Discrete HMMs Using Deep Learning Libraries/032 Discrete HMM in Tensorflow.mp416.44MB
  33. 06 HMMs for Continuous Observations/033 Gaussian Mixture Models with Hidden Markov Models.mp46.27MB
  34. 06 HMMs for Continuous Observations/034 Generating Data from a Real-Valued HMM.mp414.94MB
  35. 06 HMMs for Continuous Observations/035 Continuous-Observation HMM in Code part 1.mp446.69MB
  36. 06 HMMs for Continuous Observations/036 Continuous-Observation HMM in Code part 2.mp415.28MB
  37. 06 HMMs for Continuous Observations/037 Continuous HMM in Theano.mp445.41MB
  38. 06 HMMs for Continuous Observations/038 Continuous HMM in Tensorflow.mp422.45MB
  39. 07 HMMs for Classification/039 Generative vs. Discriminative Classifiers.mp44.12MB
  40. 07 HMMs for Classification/040 HMM Classification on Poetry Data Robert Frost vs. Edgar Allan Poe.mp424.39MB
  41. 08 Bonus Example Parts-of-Speech Tagging/041 Parts-of-Speech Tagging Concepts.mp48.51MB
  42. 08 Bonus Example Parts-of-Speech Tagging/042 POS Tagging with an HMM.mp414.38MB
  43. 09 Appendix/043 Review of Gaussian Mixture Models.mp44.99MB
  44. 09 Appendix/044 Theano Tutorial.mp419.86MB
  45. 09 Appendix/045 Tensorflow Tutorial.mp413.88MB
  46. 09 Appendix/046 How to install Numpy Scipy Matplotlib Pandas IPython Theano and TensorFlow.mp443.92MB
  47. 09 Appendix/047 How to Code by Yourself part 1.mp424.53MB
  48. 09 Appendix/048 How to Code by Yourself part 2.mp414.8MB
  49. 09 Appendix/049 BONUS Where to get Udemy coupons and FREE deep learning material.mp44.02MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统