首页 磁力链接怎么用

[FreeCourseSite.com] Udemy - Python Bootcamp for Data Science 2021 Numpy Pandas & Seaborn

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2022-1-23 21:53 2024-10-31 23:48 211 1.95 GB 91
二维码链接
[FreeCourseSite.com] Udemy - Python Bootcamp for Data Science 2021 Numpy Pandas & Seaborn的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Introduction/1. Course Introduction.mp413.9MB
  2. 1. Introduction/2. How to Download Course Notebooks.mp438.09MB
  3. 1. Introduction/3. Overview of Course Curriculum.mp427.1MB
  4. 10. Module 10 Data Wrangling1 Hierarchical Indexing/1. Hierarchical Indexing.mp431.22MB
  5. 10. Module 10 Data Wrangling1 Hierarchical Indexing/2. Reordering and Sorting Index Levels.mp414.28MB
  6. 10. Module 10 Data Wrangling1 Hierarchical Indexing/3. Summary Statistics by Level.mp417.25MB
  7. 10. Module 10 Data Wrangling1 Hierarchical Indexing/4. Indexing with Columns in Dataframe.mp423.09MB
  8. 11. Module 11 Data Wrangling2 Combining and Merging Datasets/1. Merging Datasets on Keys (common columns).mp436.89MB
  9. 11. Module 11 Data Wrangling2 Combining and Merging Datasets/2. Merging Datasets on Index.mp415.02MB
  10. 11. Module 11 Data Wrangling2 Combining and Merging Datasets/3. Concatenating Along an Axis.mp430.11MB
  11. 12. Module 12 Data Wrangling3 Reshaping and Pivoting/1. Reshaping by Stacking and Unstacking.mp426.47MB
  12. 12. Module 12 Data Wrangling3 Reshaping and Pivoting/2. Reshaping by Melting (Wide to Long ).mp49.47MB
  13. 12. Module 12 Data Wrangling3 Reshaping and Pivoting/3. Reshaping by Pivoting (Long to Wide).mp428.92MB
  14. 13. Module 13 Data Visualization with Matplotlib and Seaborn/1. Introducing Matplotlib Library.mp411.48MB
  15. 13. Module 13 Data Visualization with Matplotlib and Seaborn/10. Bar Plots with Dataframes.mp420.59MB
  16. 13. Module 13 Data Visualization with Matplotlib and Seaborn/11. Bar Plots with Seaborn.mp425.69MB
  17. 13. Module 13 Data Visualization with Matplotlib and Seaborn/12. Histograms and Density Plots.mp427.78MB
  18. 13. Module 13 Data Visualization with Matplotlib and Seaborn/13. Scatter Plots and Pair Plots.mp435.78MB
  19. 13. Module 13 Data Visualization with Matplotlib and Seaborn/14. Factor Plots for Categorical Data.mp427.32MB
  20. 13. Module 13 Data Visualization with Matplotlib and Seaborn/2. Creating Figures and Subplots.mp431.23MB
  21. 13. Module 13 Data Visualization with Matplotlib and Seaborn/3. Changing Colors, Markers and Linestyle.mp421.94MB
  22. 13. Module 13 Data Visualization with Matplotlib and Seaborn/4. Customizing Ticks and Labels.mp428.59MB
  23. 13. Module 13 Data Visualization with Matplotlib and Seaborn/5. Adding Legends.mp424.61MB
  24. 13. Module 13 Data Visualization with Matplotlib and Seaborn/6. Adding Texts and Arrows on a Plot.mp423.44MB
  25. 13. Module 13 Data Visualization with Matplotlib and Seaborn/7. Adding Annotations and Drawings on a Plot.mp431.52MB
  26. 13. Module 13 Data Visualization with Matplotlib and Seaborn/8. Saving Plots to a File.mp418.15MB
  27. 13. Module 13 Data Visualization with Matplotlib and Seaborn/9. Line Plots with Dataframe.mp426.72MB
  28. 14. Module 14 Time Series/1. Date and time Data types.mp420.25MB
  29. 14. Module 14 Time Series/2. Converting Between String and Datetime.mp425.86MB
  30. 14. Module 14 Time Series/3. Basics of Time Series.mp432.79MB
  31. 14. Module 14 Time Series/4. Generating Date Ranges.mp429.46MB
  32. 14. Module 14 Time Series/5. Shifting Data Through Time (Lagging and Leading).mp433.18MB
  33. 14. Module 14 Time Series/6. Handling Time Zone.mp433.46MB
  34. 14. Module 14 Time Series/7. Resampling and Frequency Conversion.mp423.09MB
  35. 14. Module 14 Time Series/8. Rolling and Moving Windows.mp429.77MB
  36. 15. Module 15 Real World Data Analysis Example/1. Housing Dataset Analysis -Part One.mp410.77MB
  37. 15. Module 15 Real World Data Analysis Example/2. Housing Dataset Analysis -Part Two.mp423.29MB
  38. 15. Module 15 Real World Data Analysis Example/3. Housing Dataset Analysis -Part Three.mp429.73MB
  39. 15. Module 15 Real World Data Analysis Example/4. Housing Dataset Analysis -Part Four.mp431.95MB
  40. 15. Module 15 Real World Data Analysis Example/5. Housing Dataset Analysis -Part Five.mp439.98MB
  41. 2. Module 2 Setting Python Environment/1. Decide Which Python Environment to Use.mp411.98MB
  42. 2. Module 2 Setting Python Environment/2. Local environment Installing Anaconda.mp410.44MB
  43. 2. Module 2 Setting Python Environment/3. Cloud Environment Google Colab Jupyter Notebooks.mp420.16MB
  44. 3. Module 3 Working with Jupyter Notebooks/1. Running Jupyter Notebook.mp428.76MB
  45. 3. Module 3 Working with Jupyter Notebooks/2. Tour In Basics of Jupyter Notebooks.mp426.87MB
  46. 3. Module 3 Working with Jupyter Notebooks/3. Cell Types in Jupyter Notebook.mp415.07MB
  47. 3. Module 3 Working with Jupyter Notebooks/4. Getting Help in Jupyter Notebook.mp415.56MB
  48. 3. Module 3 Working with Jupyter Notebooks/5. Magic Commands.mp423.38MB
  49. 4. Module 4 Data Structures And Sequences In Python/1. Tuple.mp419.83MB
  50. 4. Module 4 Data Structures And Sequences In Python/2. List.mp436.37MB
  51. 4. Module 4 Data Structures And Sequences In Python/3. Dictionary.mp414.79MB
  52. 4. Module 4 Data Structures And Sequences In Python/4. Set.mp44.45MB
  53. 5. Module 5 Functions in Python/1. Creating and Calling Functions.mp423.74MB
  54. 5. Module 5 Functions in Python/2. Returning Multiple Values.mp49.37MB
  55. 5. Module 5 Functions in Python/3. Lambda Functions.mp415.28MB
  56. 6. Module 6 NumPy Arrays/1. What Is NumPy Arrays (Ndarrays).mp411.54MB
  57. 6. Module 6 NumPy Arrays/10. Mathematical and Statistical Methods.mp435.39MB
  58. 6. Module 6 NumPy Arrays/11. Sorting Arrays.mp421.21MB
  59. 6. Module 6 NumPy Arrays/12. File Input and Output with Arrays.mp415.64MB
  60. 6. Module 6 NumPy Arrays/2. Creating Ndarrays.mp431.22MB
  61. 6. Module 6 NumPy Arrays/3. Data Types for Ndarrays.mp420.62MB
  62. 6. Module 6 NumPy Arrays/4. Arithmetic with NumPy Arrays.mp412.88MB
  63. 6. Module 6 NumPy Arrays/5. Indexing and Slicing-Part One.mp417.84MB
  64. 6. Module 6 NumPy Arrays/6. Indexing and Slicing-Part two.mp419.82MB
  65. 6. Module 6 NumPy Arrays/7. Boolean Indexing.mp428.16MB
  66. 6. Module 6 NumPy Arrays/8. Fancy Indexing.mp417.99MB
  67. 6. Module 6 NumPy Arrays/9. Transposing Arrays.mp48.93MB
  68. 7. Module 7 Pandas Dataframe/1. Series in Pandas.mp424.61MB
  69. 7. Module 7 Pandas Dataframe/10. Correlation and Covariance.mp418.75MB
  70. 7. Module 7 Pandas Dataframe/2. Dataframe in Pandas.mp433.96MB
  71. 7. Module 7 Pandas Dataframe/3. Index Objects.mp418.78MB
  72. 7. Module 7 Pandas Dataframe/4. Reindexing in Series and DataFrames.mp413.4MB
  73. 7. Module 7 Pandas Dataframe/5. Deleting Rows and Columns.mp45.4MB
  74. 7. Module 7 Pandas Dataframe/6. Indexing, Slicing and Filtering.mp425.33MB
  75. 7. Module 7 Pandas Dataframe/7. Arithmetic with Dataframe.mp422.14MB
  76. 7. Module 7 Pandas Dataframe/8. Sorting Series and Dataframe.mp420.27MB
  77. 7. Module 7 Pandas Dataframe/9. Descriptive Statistics with Dataframe.mp420.32MB
  78. 8. Module 8 Data Loading, Storage with Pandas/1. Reading Data in Text Format-Part1.mp422.34MB
  79. 8. Module 8 Data Loading, Storage with Pandas/2. Reading Data in Text Format-Part2.mp421.65MB
  80. 8. Module 8 Data Loading, Storage with Pandas/3. Writing Data in Text Format.mp421.88MB
  81. 8. Module 8 Data Loading, Storage with Pandas/4. Reading Microsoft Excel Files.mp412.18MB
  82. 9. Module 9 Data Cleaning and Preprocessing/1. Handling Missing Data.mp413.21MB
  83. 9. Module 9 Data Cleaning and Preprocessing/10. String Object Methods.mp420.68MB
  84. 9. Module 9 Data Cleaning and Preprocessing/2. Filtering out Missing Data.mp420.28MB
  85. 9. Module 9 Data Cleaning and Preprocessing/3. Filling in Missing Data.mp421.28MB
  86. 9. Module 9 Data Cleaning and Preprocessing/4. Removing Duplicate Entries.mp412.67MB
  87. 9. Module 9 Data Cleaning and Preprocessing/5. Replacing Values.mp413.52MB
  88. 9. Module 9 Data Cleaning and Preprocessing/6. Renaming columns and Index Labels.mp411.19MB
  89. 9. Module 9 Data Cleaning and Preprocessing/7. Filtering Outliers.mp422.44MB
  90. 9. Module 9 Data Cleaning and Preprocessing/8. Shuffling and Random Sampling.mp420.9MB
  91. 9. Module 9 Data Cleaning and Preprocessing/9. Dummy Variables.mp415.74MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统