首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[GigaCourse.Com] Udemy - Machine Learning & Deep Learning in Python & R
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2021-12-26 04:08
2025-1-26 13:25
168
13.15 GB
278
磁力链接
magnet:?xt=urn:btih:4d33b004bdddefc1de86cb8519c18e9d8815374e
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOjRkMzNiMDA0YmRkZGVmYzFkZTg2Y2I4NTE5YzE4ZTlkODgxNTM3NGVaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
GigaCourse
Com
Udemy
-
Machine
Learning
&
Deep
Learning
in
Python
&
R
文件列表
1. Introduction/1. Introduction.mp4
29.4MB
10. Logistic Regression/1. Logistic Regression.mp4
32.93MB
10. Logistic Regression/10. Evaluating performance of model.mp4
35.17MB
10. Logistic Regression/11. Evaluating model performance in Python.mp4
9.02MB
10. Logistic Regression/12. Predicting probabilities, assigning classes and making Confusion Matrix in R.mp4
55.7MB
10. Logistic Regression/2. Training a Simple Logistic Model in Python.mp4
47.87MB
10. Logistic Regression/3. Training a Simple Logistic model in R.mp4
25.57MB
10. Logistic Regression/4. Result of Simple Logistic Regression.mp4
26.94MB
10. Logistic Regression/5. Logistic with multiple predictors.mp4
8.53MB
10. Logistic Regression/6. Training multiple predictor Logistic model in Python.mp4
26.25MB
10. Logistic Regression/7. Training multiple predictor Logistic model in R.mp4
15.78MB
10. Logistic Regression/8. Confusion Matrix.mp4
21.1MB
10. Logistic Regression/9. Creating Confusion Matrix in Python.mp4
51.25MB
11. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis.mp4
40.96MB
11. Linear Discriminant Analysis (LDA)/2. LDA in Python.mp4
11.4MB
11. Linear Discriminant Analysis (LDA)/3. Linear Discriminant Analysis in R.mp4
74.36MB
12. K-Nearest Neighbors classifier/1. Test-Train Split.mp4
39.3MB
12. K-Nearest Neighbors classifier/2. Test-Train Split in Python.mp4
33.1MB
12. K-Nearest Neighbors classifier/3. Test-Train Split in R.mp4
74.23MB
12. K-Nearest Neighbors classifier/4. K-Nearest Neighbors classifier.mp4
75.42MB
12. K-Nearest Neighbors classifier/5. K-Nearest Neighbors in Python Part 1.mp4
37.23MB
12. K-Nearest Neighbors classifier/6. K-Nearest Neighbors in Python Part 2.mp4
42.36MB
12. K-Nearest Neighbors classifier/7. K-Nearest Neighbors in R.mp4
64.85MB
13. Comparing results from 3 models/1. Understanding the results of classification models.mp4
41.64MB
13. Comparing results from 3 models/2. Summary of the three models.mp4
22.22MB
14. Simple Decision Trees/1. Basics of Decision Trees.mp4
42.64MB
14. Simple Decision Trees/10. Test-Train split in Python.mp4
24.87MB
14. Simple Decision Trees/11. Splitting Data into Test and Train Set in R.mp4
43.98MB
14. Simple Decision Trees/12. Creating Decision tree in Python.mp4
17.87MB
14. Simple Decision Trees/13. Building a Regression Tree in R.mp4
103.34MB
14. Simple Decision Trees/14. Evaluating model performance in Python.mp4
16.44MB
14. Simple Decision Trees/15. Plotting decision tree in Python.mp4
21.48MB
14. Simple Decision Trees/16. Pruning a tree.mp4
18.46MB
14. Simple Decision Trees/17. Pruning a tree in Python.mp4
73.5MB
14. Simple Decision Trees/18. Pruning a Tree in R.mp4
82.1MB
14. Simple Decision Trees/2. Understanding a Regression Tree.mp4
43.72MB
14. Simple Decision Trees/3. The stopping criteria for controlling tree growth.mp4
13.98MB
14. Simple Decision Trees/4. The Data set for this part.mp4
37.26MB
14. Simple Decision Trees/5. Importing the Data set into Python.mp4
25.85MB
14. Simple Decision Trees/6. Importing the Data set into R.mp4
43.7MB
14. Simple Decision Trees/7. Missing value treatment in Python.mp4
17.93MB
14. Simple Decision Trees/8. Dummy Variable creation in Python.mp4
24.94MB
14. Simple Decision Trees/9. Dependent- Independent Data split in Python.mp4
15.18MB
15. Simple Classification Tree/1. Classification tree.mp4
28.2MB
15. Simple Classification Tree/2. The Data set for Classification problem.mp4
18.57MB
15. Simple Classification Tree/3. Classification tree in Python Preprocessing.mp4
45.38MB
15. Simple Classification Tree/4. Classification tree in Python Training.mp4
82.72MB
15. Simple Classification Tree/5. Building a classification Tree in R.mp4
85.1MB
15. Simple Classification Tree/6. Advantages and Disadvantages of Decision Trees.mp4
6.86MB
16. Ensemble technique 1 - Bagging/1. Ensemble technique 1 - Bagging.mp4
28.14MB
16. Ensemble technique 1 - Bagging/2. Ensemble technique 1 - Bagging in Python.mp4
77.3MB
16. Ensemble technique 1 - Bagging/3. Bagging in R.mp4
58.96MB
17. Ensemble technique 2 - Random Forests/1. Ensemble technique 2 - Random Forests.mp4
18.2MB
17. Ensemble technique 2 - Random Forests/2. Ensemble technique 2 - Random Forests in Python.mp4
46.7MB
17. Ensemble technique 2 - Random Forests/3. Using Grid Search in Python.mp4
80.67MB
17. Ensemble technique 2 - Random Forests/4. Random Forest in R.mp4
30.72MB
18. Ensemble technique 3 - Boosting/1. Boosting.mp4
30.58MB
18. Ensemble technique 3 - Boosting/2. Ensemble technique 3a - Boosting in Python.mp4
39.88MB
18. Ensemble technique 3 - Boosting/3. Gradient Boosting in R.mp4
69.09MB
18. Ensemble technique 3 - Boosting/4. Ensemble technique 3b - AdaBoost in Python.mp4
30.54MB
18. Ensemble technique 3 - Boosting/5. AdaBoosting in R.mp4
88.67MB
18. Ensemble technique 3 - Boosting/6. Ensemble technique 3c - XGBoost in Python.mp4
75.01MB
18. Ensemble technique 3 - Boosting/7. XGBoosting in R.mp4
161.3MB
19. Maximum Margin Classifier/1. Content flow.mp4
8.64MB
19. Maximum Margin Classifier/2. The Concept of a Hyperplane.mp4
29.42MB
19. Maximum Margin Classifier/3. Maximum Margin Classifier.mp4
22.48MB
19. Maximum Margin Classifier/4. Limitations of Maximum Margin Classifier.mp4
10.61MB
2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.mp4
16.27MB
2. Setting up Python and Jupyter Notebook/10. Working with Seaborn Library of Python.mp4
40.37MB
2. Setting up Python and Jupyter Notebook/2. This is a milestone!.mp4
20.66MB
2. Setting up Python and Jupyter Notebook/3. Opening Jupyter Notebook.mp4
65.19MB
2. Setting up Python and Jupyter Notebook/4. Introduction to Jupyter.mp4
40.92MB
2. Setting up Python and Jupyter Notebook/5. Arithmetic operators in Python Python Basics.mp4
12.74MB
2. Setting up Python and Jupyter Notebook/6. Strings in Python Python Basics.mp4
64.44MB
2. Setting up Python and Jupyter Notebook/7. Lists, Tuples and Directories Python Basics.mp4
60.33MB
2. Setting up Python and Jupyter Notebook/8. Working with Numpy Library of Python.mp4
43.88MB
2. Setting up Python and Jupyter Notebook/9. Working with Pandas Library of Python.mp4
46.88MB
20. Support Vector Classifier/1. Support Vector classifiers.mp4
56.17MB
20. Support Vector Classifier/2. Limitations of Support Vector Classifiers.mp4
10.8MB
21. Support Vector Machines/1. Kernel Based Support Vector Machines.mp4
40.12MB
22. Creating Support Vector Machine Model in Python/1. Regression and Classification Models.mp4
4.04MB
22. Creating Support Vector Machine Model in Python/10. Classification model - Standardizing the data.mp4
9.72MB
22. Creating Support Vector Machine Model in Python/11. SVM Based classification model.mp4
64.13MB
22. Creating Support Vector Machine Model in Python/12. Hyper Parameter Tuning.mp4
57.74MB
22. Creating Support Vector Machine Model in Python/13. Polynomial Kernel with Hyperparameter Tuning.mp4
22.92MB
22. Creating Support Vector Machine Model in Python/14. Radial Kernel with Hyperparameter Tuning.mp4
37.21MB
22. Creating Support Vector Machine Model in Python/2. The Data set for the Regression problem.mp4
37.2MB
22. Creating Support Vector Machine Model in Python/3. Importing data for regression model.mp4
25.84MB
22. Creating Support Vector Machine Model in Python/4. X-y Split.mp4
15.18MB
22. Creating Support Vector Machine Model in Python/5. Test-Train Split.mp4
24.87MB
22. Creating Support Vector Machine Model in Python/6. Standardizing the data.mp4
38.41MB
22. Creating Support Vector Machine Model in Python/7. SVM based Regression Model in Python.mp4
67.64MB
22. Creating Support Vector Machine Model in Python/8. The Data set for the Classification problem.mp4
18.56MB
22. Creating Support Vector Machine Model in Python/9. Classification model - Preprocessing.mp4
45.38MB
23. Creating Support Vector Machine Model in R/1. Importing Data into R.mp4
53.67MB
23. Creating Support Vector Machine Model in R/2. Test-Train Split.mp4
50.48MB
23. Creating Support Vector Machine Model in R/4. Classification SVM model using Linear Kernel.mp4
139.16MB
23. Creating Support Vector Machine Model in R/5. Hyperparameter Tuning for Linear Kernel.mp4
60.5MB
23. Creating Support Vector Machine Model in R/6. Polynomial Kernel with Hyperparameter Tuning.mp4
83.14MB
23. Creating Support Vector Machine Model in R/7. Radial Kernel with Hyperparameter Tuning.mp4
56.68MB
23. Creating Support Vector Machine Model in R/8. SVM based Regression Model in R.mp4
106.12MB
24. Introduction - Deep Learning/1. Introduction to Neural Networks and Course flow.mp4
29.07MB
24. Introduction - Deep Learning/2. Perceptron.mp4
44.75MB
24. Introduction - Deep Learning/3. Activation Functions.mp4
34.62MB
24. Introduction - Deep Learning/4. Python - Creating Perceptron model.mp4
86.56MB
25. Neural Networks - Stacking cells to create network/1. Basic Terminologies.mp4
40.42MB
25. Neural Networks - Stacking cells to create network/2. Gradient Descent.mp4
60.34MB
25. Neural Networks - Stacking cells to create network/3. Back Propagation.mp4
122.2MB
25. Neural Networks - Stacking cells to create network/4. Some Important Concepts.mp4
62.18MB
25. Neural Networks - Stacking cells to create network/5. Hyperparameter.mp4
45.36MB
26. ANN in Python/1. Keras and Tensorflow.mp4
14.92MB
26. ANN in Python/10. Using Functional API for complex architectures.mp4
92.11MB
26. ANN in Python/11. Saving - Restoring Models and Using Callbacks.mp4
151.59MB
26. ANN in Python/12. Hyperparameter Tuning.mp4
60.63MB
26. ANN in Python/2. Installing Tensorflow and Keras.mp4
20.06MB
26. ANN in Python/3. Dataset for classification.mp4
56.19MB
26. ANN in Python/4. Normalization and Test-Train split.mp4
44.2MB
26. ANN in Python/5. Different ways to create ANN using Keras.mp4
10.82MB
26. ANN in Python/6. Building the Neural Network using Keras.mp4
79.11MB
26. ANN in Python/7. Compiling and Training the Neural Network model.mp4
81.63MB
26. ANN in Python/8. Evaluating performance and Predicting using Keras.mp4
69.91MB
26. ANN in Python/9. Building Neural Network for Regression Problem.mp4
155.9MB
27. ANN in R/1. Installing Keras and Tensorflow.mp4
22.79MB
27. ANN in R/2. Data Normalization and Test-Train Split.mp4
111.78MB
27. ANN in R/3. Building,Compiling and Training.mp4
130.74MB
27. ANN in R/4. Evaluating and Predicting.mp4
99.28MB
27. ANN in R/5. ANN with NeuralNets Package.mp4
84.42MB
27. ANN in R/6. Building Regression Model with Functional API.mp4
131.13MB
27. ANN in R/7. Complex Architectures using Functional API.mp4
79.57MB
27. ANN in R/8. Saving - Restoring Models and Using Callbacks.mp4
216.03MB
28. CNN - Basics/1. CNN Introduction.mp4
51.16MB
28. CNN - Basics/2. Stride.mp4
16.58MB
28. CNN - Basics/3. Padding.mp4
31.63MB
28. CNN - Basics/4. Filters and Feature maps.mp4
52.71MB
28. CNN - Basics/5. Channels.mp4
67.77MB
28. CNN - Basics/6. PoolingLayer.mp4
46.88MB
29. Creating CNN model in Python/1. CNN model in Python - Preprocessing.mp4
40.63MB
29. Creating CNN model in Python/2. CNN model in Python - structure and Compile.mp4
43.26MB
29. Creating CNN model in Python/3. CNN model in Python - Training and results.mp4
55.15MB
29. Creating CNN model in Python/4. Comparison - Pooling vs Without Pooling in Python.mp4
57.97MB
3. Setting up R Studio and R crash course/1. Installing R and R studio.mp4
35.71MB
3. Setting up R Studio and R crash course/2. Basics of R and R studio.mp4
38.85MB
3. Setting up R Studio and R crash course/3. Packages in R.mp4
82.95MB
3. Setting up R Studio and R crash course/4. Inputting data part 1 Inbuilt datasets of R.mp4
40.74MB
3. Setting up R Studio and R crash course/5. Inputting data part 2 Manual data entry.mp4
25.52MB
3. Setting up R Studio and R crash course/6. Inputting data part 3 Importing from CSV or Text files.mp4
60.11MB
3. Setting up R Studio and R crash course/7. Creating Barplots in R.mp4
96.74MB
3. Setting up R Studio and R crash course/8. Creating Histograms in R.mp4
42.02MB
30. Creating CNN model in R/1. CNN on MNIST Fashion Dataset - Model Architecture.mp4
7.35MB
30. Creating CNN model in R/2. Data Preprocessing.mp4
67.03MB
30. Creating CNN model in R/3. Creating Model Architecture.mp4
71.6MB
30. Creating CNN model in R/4. Compiling and training.mp4
32.2MB
30. Creating CNN model in R/5. Model Performance.mp4
68.08MB
30. Creating CNN model in R/6. Comparison - Pooling vs Without Pooling in R.mp4
44.6MB
31. Project Creating CNN model from scratch in Python/1. Project - Introduction.mp4
49.39MB
31. Project Creating CNN model from scratch in Python/3. Project - Data Preprocessing in Python.mp4
71.83MB
31. Project Creating CNN model from scratch in Python/4. Project - Training CNN model in Python.mp4
65.98MB
31. Project Creating CNN model from scratch in Python/5. Project in Python - model results.mp4
21.02MB
32. Project Creating CNN model from scratch/1. Project in R - Data Preprocessing.mp4
87.76MB
32. Project Creating CNN model from scratch/2. CNN Project in R - Structure and Compile.mp4
46.12MB
32. Project Creating CNN model from scratch/3. Project in R - Training.mp4
24.58MB
32. Project Creating CNN model from scratch/4. Project in R - Model Performance.mp4
23.18MB
32. Project Creating CNN model from scratch/5. Project in R - Data Augmentation.mp4
56.38MB
32. Project Creating CNN model from scratch/6. Project in R - Validation Performance.mp4
23.69MB
33. Project Data Augmentation for avoiding overfitting/1. Project - Data Augmentation Preprocessing.mp4
41.42MB
33. Project Data Augmentation for avoiding overfitting/2. Project - Data Augmentation Training and Results.mp4
53.04MB
34. Transfer Learning Basics/1. ILSVRC.mp4
20.93MB
34. Transfer Learning Basics/2. LeNET.mp4
7MB
34. Transfer Learning Basics/3. VGG16NET.mp4
10.35MB
34. Transfer Learning Basics/4. GoogLeNet.mp4
21.37MB
34. Transfer Learning Basics/5. Transfer Learning.mp4
29.99MB
34. Transfer Learning Basics/6. Project - Transfer Learning - VGG16.mp4
129.1MB
35. Transfer Learning in R/1. Project - Transfer Learning - VGG16 (Implementation).mp4
101.57MB
35. Transfer Learning in R/2. Project - Transfer Learning - VGG16 (Performance).mp4
64.11MB
36. Time Series Analysis and Forecasting/1. Introduction.mp4
12.27MB
36. Time Series Analysis and Forecasting/2. Time Series Forecasting - Use cases.mp4
25.92MB
36. Time Series Analysis and Forecasting/3. Forecasting model creation - Steps.mp4
10.11MB
36. Time Series Analysis and Forecasting/4. Forecasting model creation - Steps 1 (Goal).mp4
34.5MB
36. Time Series Analysis and Forecasting/5. Time Series - Basic Notations.mp4
62.48MB
37. Time Series - Preprocessing in Python/1. Data Loading in Python.mp4
108.87MB
37. Time Series - Preprocessing in Python/10. Exponential Smoothing.mp4
8.39MB
37. Time Series - Preprocessing in Python/2. Time Series - Visualization Basics.mp4
63.72MB
37. Time Series - Preprocessing in Python/3. Time Series - Visualization in Python.mp4
165.2MB
37. Time Series - Preprocessing in Python/4. Time Series - Feature Engineering Basics.mp4
59.48MB
37. Time Series - Preprocessing in Python/5. Time Series - Feature Engineering in Python.mp4
112.69MB
37. Time Series - Preprocessing in Python/6. Time Series - Upsampling and Downsampling.mp4
16.96MB
37. Time Series - Preprocessing in Python/7. Time Series - Upsampling and Downsampling in Python.mp4
100.67MB
37. Time Series - Preprocessing in Python/8. Time Series - Power Transformation.mp4
14.86MB
37. Time Series - Preprocessing in Python/9. Moving Average.mp4
38.71MB
38. Time Series - Important Concepts/1. White Noise.mp4
11.37MB
38. Time Series - Important Concepts/2. Random Walk.mp4
21.17MB
38. Time Series - Important Concepts/3. Decomposing Time Series in Python.mp4
59.84MB
38. Time Series - Important Concepts/4. Differencing.mp4
32.35MB
38. Time Series - Important Concepts/5. Differencing in Python.mp4
113.01MB
39. Time Series - Implementation in Python/1. Test Train Split in Python.mp4
57.42MB
39. Time Series - Implementation in Python/2. Naive (Persistence) model in Python.mp4
43.38MB
39. Time Series - Implementation in Python/3. Auto Regression Model - Basics.mp4
16.89MB
39. Time Series - Implementation in Python/4. Auto Regression Model creation in Python.mp4
53.49MB
39. Time Series - Implementation in Python/5. Auto Regression with Walk Forward validation in Python.mp4
49.6MB
39. Time Series - Implementation in Python/6. Moving Average model -Basics.mp4
24.1MB
39. Time Series - Implementation in Python/7. Moving Average model in Python.mp4
56.65MB
4. Basics of Statistics/1. Types of Data.mp4
21.76MB
4. Basics of Statistics/2. Types of Statistics.mp4
10.94MB
4. Basics of Statistics/3. Describing data Graphically.mp4
65.4MB
4. Basics of Statistics/4. Measures of Centers.mp4
38.58MB
4. Basics of Statistics/5. Measures of Dispersion.mp4
22.85MB
40. Time Series - ARIMA model/1. ACF and PACF.mp4
41.23MB
40. Time Series - ARIMA model/2. ARIMA model - Basics.mp4
21.37MB
40. Time Series - ARIMA model/3. ARIMA model in Python.mp4
74.44MB
40. Time Series - ARIMA model/4. ARIMA model with Walk Forward Validation in Python.mp4
32.15MB
41. Time Series - SARIMA model/1. SARIMA model.mp4
39.03MB
41. Time Series - SARIMA model/2. SARIMA model in Python.mp4
66.23MB
41. Time Series - SARIMA model/3. Stationary time Series.mp4
5.58MB
42. Bonus Section/1. The final milestone!.mp4
11.85MB
5. Introduction to Machine Learning/1. Introduction to Machine Learning.mp4
109.18MB
5. Introduction to Machine Learning/2. Building a Machine Learning Model.mp4
39.48MB
6. Data Preprocessing/1. Gathering Business Knowledge.mp4
22.29MB
6. Data Preprocessing/10. Outlier Treatment in Python.mp4
70.26MB
6. Data Preprocessing/11. Outlier Treatment in R.mp4
30.74MB
6. Data Preprocessing/12. Missing Value Imputation.mp4
25MB
6. Data Preprocessing/13. Missing Value Imputation in Python.mp4
23.42MB
6. Data Preprocessing/14. Missing Value imputation in R.mp4
26.01MB
6. Data Preprocessing/15. Seasonality in Data.mp4
17.02MB
6. Data Preprocessing/16. Bi-variate analysis and Variable transformation.mp4
100.4MB
6. Data Preprocessing/17. Variable transformation and deletion in Python.mp4
44.12MB
6. Data Preprocessing/18. Variable transformation in R.mp4
55.43MB
6. Data Preprocessing/19. Non-usable variables.mp4
20.25MB
6. Data Preprocessing/2. Data Exploration.mp4
20.51MB
6. Data Preprocessing/20. Dummy variable creation Handling qualitative data.mp4
36.81MB
6. Data Preprocessing/21. Dummy variable creation in Python.mp4
26.53MB
6. Data Preprocessing/22. Dummy variable creation in R.mp4
43.99MB
6. Data Preprocessing/23. Correlation Analysis.mp4
71.6MB
6. Data Preprocessing/24. Correlation Analysis in Python.mp4
55.3MB
6. Data Preprocessing/25. Correlation Matrix in R.mp4
83.13MB
6. Data Preprocessing/3. The Dataset and the Data Dictionary.mp4
69.29MB
6. Data Preprocessing/4. Importing Data in Python.mp4
27.84MB
6. Data Preprocessing/5. Importing the dataset into R.mp4
13.12MB
6. Data Preprocessing/6. Univariate analysis and EDD.mp4
24.19MB
6. Data Preprocessing/7. EDD in Python.mp4
61.81MB
6. Data Preprocessing/8. EDD in R.mp4
96.98MB
6. Data Preprocessing/9. Outlier Treatment.mp4
24.5MB
7. Linear Regression/1. The Problem Statement.mp4
9.37MB
7. Linear Regression/10. Multiple Linear Regression in Python.mp4
69.74MB
7. Linear Regression/11. Multiple Linear Regression in R.mp4
62.38MB
7. Linear Regression/12. Test-train split.mp4
41.88MB
7. Linear Regression/13. Bias Variance trade-off.mp4
25.09MB
7. Linear Regression/14. Test train split in Python.mp4
44.88MB
7. Linear Regression/15. Test-Train Split in R.mp4
75.6MB
7. Linear Regression/16. Regression models other than OLS.mp4
16.55MB
7. Linear Regression/17. Subset selection techniques.mp4
79.07MB
7. Linear Regression/18. Subset selection in R.mp4
63.53MB
7. Linear Regression/19. Shrinkage methods Ridge and Lasso.mp4
33.34MB
7. Linear Regression/2. Basic Equations and Ordinary Least Squares (OLS) method.mp4
43.37MB
7. Linear Regression/20. Ridge regression and Lasso in Python.mp4
128.85MB
7. Linear Regression/21. Ridge regression and Lasso in R.mp4
103.43MB
7. Linear Regression/22. Heteroscedasticity.mp4
14.49MB
7. Linear Regression/3. Assessing accuracy of predicted coefficients.mp4
92.11MB
7. Linear Regression/4. Assessing Model Accuracy RSE and R squared.mp4
43.6MB
7. Linear Regression/5. Simple Linear Regression in Python.mp4
63.43MB
7. Linear Regression/6. Simple Linear Regression in R.mp4
40.83MB
7. Linear Regression/7. Multiple Linear Regression.mp4
34.32MB
7. Linear Regression/8. The F - statistic.mp4
55.99MB
7. Linear Regression/9. Interpreting results of Categorical variables.mp4
22.5MB
8. Classification Models Data Preparation/1. The Data and the Data Dictionary.mp4
79.01MB
8. Classification Models Data Preparation/10. Variable transformation and Deletion in Python.mp4
29.26MB
8. Classification Models Data Preparation/11. Variable transformation in R.mp4
38.03MB
8. Classification Models Data Preparation/12. Dummy variable creation in Python.mp4
26.37MB
8. Classification Models Data Preparation/13. Dummy variable creation in R.mp4
44.36MB
8. Classification Models Data Preparation/2. Data Import in Python.mp4
22.06MB
8. Classification Models Data Preparation/3. Importing the dataset into R.mp4
13.47MB
8. Classification Models Data Preparation/4. EDD in Python.mp4
77.63MB
8. Classification Models Data Preparation/5. EDD in R.mp4
66.52MB
8. Classification Models Data Preparation/6. Outlier treatment in Python.mp4
47.32MB
8. Classification Models Data Preparation/7. Outlier Treatment in R.mp4
25.37MB
8. Classification Models Data Preparation/8. Missing Value Imputation in Python.mp4
22.56MB
8. Classification Models Data Preparation/9. Missing Value imputation in R.mp4
19.05MB
9. The Three classification models/1. Three Classifiers and the problem statement.mp4
20.34MB
9. The Three classification models/2. Why can't we use Linear Regression.mp4
16.94MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统