首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[DesireCourse.Net] Udemy - The Complete Pandas Bootcamp 2020 Data Science with Python
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2020-6-1 02:51
2024-12-17 09:11
186
11.07 GB
254
磁力链接
magnet:?xt=urn:btih:73f82d011e88c51a9b3d146d2fb6da01cf7f1955
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOjczZjgyZDAxMWU4OGM1MWE5YjNkMTQ2ZDJmYjZkYTAxY2Y3ZjE5NTVaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
DesireCourse
Net
Udemy
-
The
Complete
Pandas
Bootcamp
2020
Data
Science
with
Python
文件列表
1. Getting Started/1. Overview Student FAQ.mp4
48.47MB
1. Getting Started/2. Tips How to get the most out of this course.mp4
43.63MB
1. Getting Started/3. Did you know that....mp4
31.24MB
1. Getting Started/5. Installation of Anaconda.mp4
86.27MB
1. Getting Started/6. Opening a Jupyter Notebook.mp4
65.09MB
1. Getting Started/7. How to use Jupyter Notebooks.mp4
66.29MB
1. Getting Started/8. How to tackle Pandas Version 1.0.mp4
19.03MB
10. Importing Data/1. Importing csv-files with pd.read_csv.mp4
90.94MB
10. Importing Data/2. Importing messy csv-files with pd.read_csv.mp4
63.28MB
10. Importing Data/3. Importing Data from Excel with pd.read_excel().mp4
73.9MB
10. Importing Data/4. Importing messy Data from Excel with pd.read_excel().mp4
72.44MB
10. Importing Data/5. Importing Data from the Web with pd.read_html().mp4
58MB
11. Cleaning Data/1. First Inspection & Handling of inconsistent Data.mp4
68.24MB
11. Cleaning Data/10. Handling Removing Duplicates.mp4
88.67MB
11. Cleaning Data/11. The ignore_index parameter (NEW in Pandas 1.0).mp4
5.67MB
11. Cleaning Data/12. Detection of Outliers.mp4
44.07MB
11. Cleaning Data/13. Handling Removing Outliers.mp4
29.69MB
11. Cleaning Data/14. Categorical Data.mp4
45.48MB
11. Cleaning Data/15. Pandas Version 1.0 New dtypes and pd.NA.mp4
18.47MB
11. Cleaning Data/17. Coding Exercise 11 (Solution).mp4
129.71MB
11. Cleaning Data/2. String Operations.mp4
80.88MB
11. Cleaning Data/3. Changing Datatype of Columns with astype().mp4
38.8MB
11. Cleaning Data/4. Intro NA values missing values.mp4
45.64MB
11. Cleaning Data/5. Detection of missing Values.mp4
89.4MB
11. Cleaning Data/6. Removing missing values.mp4
85.5MB
11. Cleaning Data/7. Replacing missing values.mp4
24.59MB
11. Cleaning Data/8. Intro Duplicates.mp4
20.26MB
11. Cleaning Data/9. Detection of Duplicates.mp4
79.21MB
12. Merging, Joining, and Concatenating Data/10. Right Joins (without Intersection) with merge().mp4
15.03MB
12. Merging, Joining, and Concatenating Data/11. Left Joins with merge().mp4
24.09MB
12. Merging, Joining, and Concatenating Data/12. Right Joins with merge().mp4
27.41MB
12. Merging, Joining, and Concatenating Data/13. Joining on different Column Names Indexes.mp4
95.32MB
12. Merging, Joining, and Concatenating Data/14. Joining on more than one Column.mp4
38.69MB
12. Merging, Joining, and Concatenating Data/15. pd.merge() and join().mp4
35.48MB
12. Merging, Joining, and Concatenating Data/2. Adding Rows with append() and pd.concat() (Part 1).mp4
88.07MB
12. Merging, Joining, and Concatenating Data/3. Adding Rows with pd.concat() (Part 2).mp4
56.9MB
12. Merging, Joining, and Concatenating Data/4. Arithmetic with Pandas Objects Data Alignment.mp4
38.91MB
12. Merging, Joining, and Concatenating Data/6. Outer Joins with merge().mp4
80.1MB
12. Merging, Joining, and Concatenating Data/7. Inner Joins with merge().mp4
15.56MB
12. Merging, Joining, and Concatenating Data/8. Outer Joins (without Intersection) with merge().mp4
31.49MB
12. Merging, Joining, and Concatenating Data/9. Left Joins (without Intersection) with merge().mp4
21.85MB
13. GroupBy Operations/1. Intro.mp4
10.09MB
13. GroupBy Operations/10. Replacing NA Values by group-specific Values.mp4
44.75MB
13. GroupBy Operations/11. Generalizing split-apply-combine with apply().mp4
42.78MB
13. GroupBy Operations/12. Hierarchical Indexing with Groupby.mp4
32.86MB
13. GroupBy Operations/13. stack() and unstack().mp4
78.81MB
13. GroupBy Operations/16. Coding Exercise 13 (Solution).mp4
81.56MB
13. GroupBy Operations/2. Understanding the GroupBy Object.mp4
46.27MB
13. GroupBy Operations/3. Splitting with many Keys.mp4
49.91MB
13. GroupBy Operations/4. split-apply-combine explained.mp4
47.07MB
13. GroupBy Operations/5. split-apply-combine applied.mp4
70.7MB
13. GroupBy Operations/7. Advanced aggregation with agg().mp4
30.26MB
13. GroupBy Operations/8. GroupBy Aggregation with Relabeling (NEW - Pandas Version 0.25).mp4
20.62MB
13. GroupBy Operations/9. Transformation with transform().mp4
35.41MB
14. Reshaping and Pivoting DataFrames/2. Transposing Rows and Columns.mp4
68.43MB
14. Reshaping and Pivoting DataFrames/3. Pivoting DataFrames with pivot().mp4
55.9MB
14. Reshaping and Pivoting DataFrames/4. Limits of pivot().mp4
58.25MB
14. Reshaping and Pivoting DataFrames/5. pivot_table().mp4
58.07MB
14. Reshaping and Pivoting DataFrames/6. pd.crosstab().mp4
99.48MB
14. Reshaping and Pivoting DataFrames/7. melting DataFrames with melt().mp4
49.45MB
15. Data Preparation and Feature Creation/10. Scaling Standardization.mp4
56.33MB
15. Data Preparation and Feature Creation/11. Creating Dummy Variables.mp4
55.25MB
15. Data Preparation and Feature Creation/12. String Operations.mp4
29.66MB
15. Data Preparation and Feature Creation/2. Arithmetic Operations (Part 1).mp4
63.52MB
15. Data Preparation and Feature Creation/3. Arithmetic Operations (Part 2).mp4
58.45MB
15. Data Preparation and Feature Creation/4. TransformationMapping with map().mp4
42.68MB
15. Data Preparation and Feature Creation/5. Conditional Transformation.mp4
33.41MB
15. Data Preparation and Feature Creation/6. Discretization and Binning with pd.cut() (Part 1).mp4
73.03MB
15. Data Preparation and Feature Creation/7. Discretization and Binning with pd.cut() (Part 2).mp4
32.7MB
15. Data Preparation and Feature Creation/8. Discretization and Binning with pd.qcut().mp4
85.39MB
15. Data Preparation and Feature Creation/9. Floors and Caps.mp4
39.25MB
16. Advanced Visualization with Seaborn/2. First Steps in Seaborn.mp4
22.1MB
16. Advanced Visualization with Seaborn/3. Categorical Plots.mp4
85.2MB
16. Advanced Visualization with Seaborn/4. Joint Plots Regression Plots.mp4
79.61MB
16. Advanced Visualization with Seaborn/5. Matrixplots Heatmaps.mp4
42.78MB
17. ---PART 3 COMPREHENSIVE PROJECT CHALLENGE---/2. Olympic Medal Tables (Instruction & Hints).mp4
57.71MB
17. ---PART 3 COMPREHENSIVE PROJECT CHALLENGE---/3. Olympic Medal Tables (Solution Part 1).mp4
38.42MB
17. ---PART 3 COMPREHENSIVE PROJECT CHALLENGE---/4. Olympic Medal Tables (Solution Part 2).mp4
128.78MB
17. ---PART 3 COMPREHENSIVE PROJECT CHALLENGE---/5. Olympic Medal Tables (Solution Part 3).mp4
26.99MB
19. Time Series Basics/1. Importing Time Series Data from csv-files.mp4
41.75MB
19. Time Series Basics/10. Advanced Indexing with reindex().mp4
50.5MB
19. Time Series Basics/2. Converting strings to datetime objects with pd.to_datetime().mp4
58MB
19. Time Series Basics/3. Initial Analysis Visualization of Time Series.mp4
35MB
19. Time Series Basics/4. Indexing and Slicing Time Series.mp4
48.16MB
19. Time Series Basics/5. Creating a customized DatetimeIndex with pd.date_range().mp4
114.64MB
19. Time Series Basics/6. More on pd.date_range().mp4
12.36MB
19. Time Series Basics/7. Downsampling Time Series with resample() (Part 1).mp4
85.5MB
19. Time Series Basics/8. Downsampling Time Series with resample (Part 2).mp4
49.11MB
19. Time Series Basics/9. The PeriodIndex object.mp4
38.78MB
2. ---PART 1 PANDAS FROM ZERO TO HERO (BUILDING BLOCKS)---/1. Intro to Tabular Data Pandas.mp4
18.07MB
2. ---PART 1 PANDAS FROM ZERO TO HERO (BUILDING BLOCKS)---/2. Download Part 1 Course Materials.mp4
18.73MB
20. Time Series Advanced Financial Time Series/10. Financial Time Series - Covariance and Correlation.mp4
25.73MB
20. Time Series Advanced Financial Time Series/11. Helpful DatetimeIndex Attributes and Methods.mp4
44.3MB
20. Time Series Advanced Financial Time Series/12. Filling NA Values with bfill, ffill and interpolation.mp4
78.44MB
20. Time Series Advanced Financial Time Series/2. Getting Ready (Installing required package).mp4
21.77MB
20. Time Series Advanced Financial Time Series/3. Importing Stock Price Data from Yahoo Finance (it still works!).mp4
71.92MB
20. Time Series Advanced Financial Time Series/4. Initial Inspection and Visualization.mp4
42.33MB
20. Time Series Advanced Financial Time Series/5. Normalizing Time Series to a Base Value (100).mp4
44.26MB
20. Time Series Advanced Financial Time Series/6. The shift() method.mp4
35.78MB
20. Time Series Advanced Financial Time Series/7. The methods diff() and pct_change().mp4
40.23MB
20. Time Series Advanced Financial Time Series/8. Measuring Stock Performance with MEAN Returns and STD of Returns.mp4
43.93MB
20. Time Series Advanced Financial Time Series/9. Financial Time Series - Return and Risk.mp4
53.62MB
21. +++ WHAT´S NEW IN PANDAS VERSION 1.0 - A HANDS-ON GUIDE +++/1. Intro and Overview.mp4
15.5MB
21. +++ WHAT´S NEW IN PANDAS VERSION 1.0 - A HANDS-ON GUIDE +++/10. The NEW StringDtype.mp4
32.1MB
21. +++ WHAT´S NEW IN PANDAS VERSION 1.0 - A HANDS-ON GUIDE +++/11. The NEW nullable BooleanDtype.mp4
23.2MB
21. +++ WHAT´S NEW IN PANDAS VERSION 1.0 - A HANDS-ON GUIDE +++/12. Addition of the ignore_index parameter.mp4
21.75MB
21. +++ WHAT´S NEW IN PANDAS VERSION 1.0 - A HANDS-ON GUIDE +++/13. Removal of prior Version Deprecations.mp4
42.87MB
21. +++ WHAT´S NEW IN PANDAS VERSION 1.0 - A HANDS-ON GUIDE +++/4. Important Recap Pandas Display Options (Changed in Version 0.25).mp4
36.51MB
21. +++ WHAT´S NEW IN PANDAS VERSION 1.0 - A HANDS-ON GUIDE +++/5. Info() method - new and extended output.mp4
9.86MB
21. +++ WHAT´S NEW IN PANDAS VERSION 1.0 - A HANDS-ON GUIDE +++/6. NEW Extension dtypes (nullable dtypes) Why do we need them.mp4
28.29MB
21. +++ WHAT´S NEW IN PANDAS VERSION 1.0 - A HANDS-ON GUIDE +++/7. Creating the NEW extension dtypes with convert_dtypes().mp4
25.7MB
21. +++ WHAT´S NEW IN PANDAS VERSION 1.0 - A HANDS-ON GUIDE +++/8. NEW pd.NA value for missing values.mp4
27.91MB
21. +++ WHAT´S NEW IN PANDAS VERSION 1.0 - A HANDS-ON GUIDE +++/9. The NEW nullable Int64Dtype.mp4
18MB
23. Python Basics/1. Intro.mp4
5.89MB
23. Python Basics/10. Operators & Booleans.mp4
59.52MB
23. Python Basics/11. Conditional Statements (if, elif, else, while).mp4
86.04MB
23. Python Basics/12. For Loops.mp4
58.42MB
23. Python Basics/13. Key words break, pass, continue.mp4
36.71MB
23. Python Basics/14. Generating Random Numbers.mp4
38.13MB
23. Python Basics/15. User Defined Functions (Part 1).mp4
64.35MB
23. Python Basics/16. User Defined Functions (Part 2).mp4
57.39MB
23. Python Basics/17. User Defined Functions (Part 3).mp4
52.12MB
23. Python Basics/18. Visualization with Matplotlib.mp4
124.22MB
23. Python Basics/2. First Steps.mp4
34.22MB
23. Python Basics/20. Python Basics Quiz Solution.mp4
38.25MB
23. Python Basics/3. Variables.mp4
31.46MB
23. Python Basics/4. Data Types Integers and Floats.mp4
49.47MB
23. Python Basics/5. Data Types Strings.mp4
77.78MB
23. Python Basics/6. Data Types Lists (Part 1).mp4
62.7MB
23. Python Basics/7. Data Types Lists (Part 2).mp4
134.41MB
23. Python Basics/8. Data Types Tuples.mp4
41.8MB
23. Python Basics/9. Data Types Sets.mp4
21.44MB
24. The Numpy Package/1. Introduction to Numpy Arrays.mp4
41.13MB
24. The Numpy Package/10. Summary Statistics.mp4
44.82MB
24. The Numpy Package/11. Visualization and (Linear) Regression.mp4
84.55MB
24. The Numpy Package/13. Numpy Quiz Solution.mp4
45.45MB
24. The Numpy Package/2. Numpy Arrays Vectorization.mp4
64.74MB
24. The Numpy Package/3. Numpy Arrays Indexing and Slicing.mp4
53.44MB
24. The Numpy Package/4. Numpy Arrays Shape and Dimensions.mp4
35.52MB
24. The Numpy Package/5. Numpy Arrays Indexing and Slicing of multi-dimensional Arrays.mp4
73.64MB
24. The Numpy Package/6. Numpy Arrays Boolean Indexing.mp4
44.22MB
24. The Numpy Package/7. Generating Random Numbers.mp4
67.53MB
24. The Numpy Package/8. Performance Issues.mp4
49.88MB
24. The Numpy Package/9. Case Study Numpy vs. Python Standard Library.mp4
45.61MB
25. Statistical Concepts/1. Statistics - Overview, Terms and Vocabulary.mp4
93.36MB
25. Statistical Concepts/10. Minimum, Maximum and Range with PythonNumpy.mp4
12.3MB
25. Statistical Concepts/11. Percentiles with PythonNumpy.mp4
17.57MB
25. Statistical Concepts/12. Variance and Standard Deviation with PythonNumpy.mp4
16.35MB
25. Statistical Concepts/13. Skew and Kurtosis (Theory).mp4
18.02MB
25. Statistical Concepts/14. How to calculate Skew and Kurtosis with scipy.stats.mp4
27.44MB
25. Statistical Concepts/15. How to generate Random Numbers with Numpy.mp4
25.21MB
25. Statistical Concepts/16. Reproducibility with np.random.seed().mp4
17.25MB
25. Statistical Concepts/17. Probability Distributions - Overview.mp4
35.69MB
25. Statistical Concepts/18. Discrete Uniform Distributions.mp4
28.19MB
25. Statistical Concepts/19. Continuous Uniform Distributions.mp4
20.11MB
25. Statistical Concepts/20. The Normal Distribution (Theory).mp4
18.42MB
25. Statistical Concepts/21. Creating a normally distributed Random Variable.mp4
24.11MB
25. Statistical Concepts/22. Normal Distribution - Probability Density Function (pdf) with scipy.stats.mp4
26.95MB
25. Statistical Concepts/23. Normal Distribution - Cumulative Distribution Function (cdf) with scipy.stats.mp4
15.39MB
25. Statistical Concepts/24. The Standard Normal Distribution and Z-Values.mp4
38.66MB
25. Statistical Concepts/25. Properties of the Standard Normal Distribution (Theory).mp4
14.85MB
25. Statistical Concepts/26. Probabilities and Z-Values with scipy.stats.mp4
59.28MB
25. Statistical Concepts/27. Confidence Intervals with scipy.stats.mp4
48.1MB
25. Statistical Concepts/28. Covariance and Correlation Coefficient (Theory).mp4
27.58MB
25. Statistical Concepts/29. Cleaning and preparing the Data - Movies Database (Part 1).mp4
47MB
25. Statistical Concepts/3. Population vs. Sample.mp4
35.57MB
25. Statistical Concepts/30. Cleaning and preparing the Data - Movies Database (Part 2).mp4
31.1MB
25. Statistical Concepts/31. How to calculate Covariance and Correlation in Python.mp4
23.99MB
25. Statistical Concepts/32. Correlation and Scatterplots – visual Interpretation.mp4
20MB
25. Statistical Concepts/33. What is Linear Regression (Theory).mp4
11.64MB
25. Statistical Concepts/34. A simple Linear Regression Model with numpy & Scipy.mp4
39.67MB
25. Statistical Concepts/35. How to interpret Intercept and Slope Coefficient.mp4
12.35MB
25. Statistical Concepts/36. Case Study (Part 1) The Market Model (Single Factor Model).mp4
26.34MB
25. Statistical Concepts/37. Case Study (Part 2) The Market Model (Single Factor Model).mp4
10.31MB
25. Statistical Concepts/4. Visualizing Frequency Distributions with plt.hist().mp4
22.64MB
25. Statistical Concepts/5. Relative and Cumulative Frequencies with plt.hist().mp4
36.41MB
25. Statistical Concepts/6. Measures of Central Tendency (Theory).mp4
20.74MB
25. Statistical Concepts/7. Coding Measures of Central Tendency - Mean and Median.mp4
22.34MB
25. Statistical Concepts/8. Coding Measures of Central Tendency - Geometric Mean.mp4
16.56MB
25. Statistical Concepts/9. Variability around the Central Tendency Dispersion (Theory).mp4
27.69MB
3. Pandas Basics (DataFrame Basics I)/1. Create your very first Pandas DataFrame (from csv).mp4
59.42MB
3. Pandas Basics (DataFrame Basics I)/10. Selecting one Column with the dot notation.mp4
8.53MB
3. Pandas Basics (DataFrame Basics I)/11. Zero-based Indexing and Negative Indexing.mp4
10.18MB
3. Pandas Basics (DataFrame Basics I)/12. Selecting Rows with iloc (position-based indexing).mp4
65MB
3. Pandas Basics (DataFrame Basics I)/13. Slicing Rows and Columns with iloc (position-based indexing).mp4
24.29MB
3. Pandas Basics (DataFrame Basics I)/15. Selecting Rows with loc (label-based indexing).mp4
21.34MB
3. Pandas Basics (DataFrame Basics I)/16. Slicing Rows and Columns with loc (label-based indexing).mp4
77.55MB
3. Pandas Basics (DataFrame Basics I)/18. Indexing and Slicing with reindex().mp4
38.92MB
3. Pandas Basics (DataFrame Basics I)/19. Summary, Best Practices and Outlook.mp4
41.99MB
3. Pandas Basics (DataFrame Basics I)/2. Pandas Display Options and the methods head() & tail().mp4
40.46MB
3. Pandas Basics (DataFrame Basics I)/21. Coding Exercise 2 (Intro).mp4
8.06MB
3. Pandas Basics (DataFrame Basics I)/22. Coding Exercise 2 (Solution).mp4
28.07MB
3. Pandas Basics (DataFrame Basics I)/23. Advanced Indexing and Slicing (optional).mp4
34.11MB
3. Pandas Basics (DataFrame Basics I)/3. First Data Inspection.mp4
56.01MB
3. Pandas Basics (DataFrame Basics I)/4. Built-in Functions, Attributes and Methods with Pandas.mp4
46.87MB
3. Pandas Basics (DataFrame Basics I)/5. Make it easy TAB Completion and Tooltip.mp4
54.43MB
3. Pandas Basics (DataFrame Basics I)/7. Explore your own Dataset Coding Exercise 1 (Intro).mp4
26.55MB
3. Pandas Basics (DataFrame Basics I)/8. Explore your own Dataset Coding Exercise 1 (Solution).mp4
31.2MB
3. Pandas Basics (DataFrame Basics I)/9. Selecting Columns.mp4
26.63MB
4. Pandas Series and Index Objects/10. idxmin() and idxmax().mp4
28.69MB
4. Pandas Series and Index Objects/11. Manipulating Pandas Series.mp4
37.87MB
4. Pandas Series and Index Objects/14. Coding Exercise 3 (Solution).mp4
38.65MB
4. Pandas Series and Index Objects/15. First Steps with Pandas Index Objects.mp4
43.09MB
4. Pandas Series and Index Objects/16. Creating Index Objects from Scratch.mp4
15.02MB
4. Pandas Series and Index Objects/17. Changing Row Index with set_index() and reset_index().mp4
75.03MB
4. Pandas Series and Index Objects/18. Changing Column Labels.mp4
21.16MB
4. Pandas Series and Index Objects/19. Renaming Index & Column Labels with rename().mp4
28MB
4. Pandas Series and Index Objects/2. First Steps with Pandas Series.mp4
19MB
4. Pandas Series and Index Objects/22. Coding Exercise 4 (Solution).mp4
26.35MB
4. Pandas Series and Index Objects/3. Analyzing Numerical Series with unique(), nunique() and value_counts().mp4
67.12MB
4. Pandas Series and Index Objects/4. Analyzing non-numerical Series with unique(), nunique(), value_counts().mp4
42.89MB
4. Pandas Series and Index Objects/5. Creating Pandas Series (Part 1).mp4
38.09MB
4. Pandas Series and Index Objects/6. Creating Pandas Series (Part 2).mp4
26.74MB
4. Pandas Series and Index Objects/7. Indexing and Slicing Pandas Series.mp4
66.22MB
4. Pandas Series and Index Objects/8. Sorting of Series and Introduction to the inplace - parameter.mp4
41.4MB
4. Pandas Series and Index Objects/9. nlargest() and nsmallest().mp4
16.77MB
5. DataFrame Basics II/10. Creating Columns based on other Columns.mp4
34.56MB
5. DataFrame Basics II/11. Adding Columns with insert().mp4
13.07MB
5. DataFrame Basics II/12. Creating DataFrames from Scratch with pd.DataFrame().mp4
43.3MB
5. DataFrame Basics II/13. Adding new Rows (hands-on approach).mp4
16.95MB
5. DataFrame Basics II/16. Coding Exercise 5 (Solution).mp4
57.67MB
5. DataFrame Basics II/2. Filtering DataFrames by one Condition.mp4
52.92MB
5. DataFrame Basics II/3. Filtering DataFrames by many Conditions (AND).mp4
25.93MB
5. DataFrame Basics II/4. Filtering DataFrames by many Conditions (OR).mp4
30.82MB
5. DataFrame Basics II/5. Advanced Filtering with between(), isin() and ~.mp4
65.68MB
5. DataFrame Basics II/6. any() and all().mp4
17.58MB
5. DataFrame Basics II/7. Removing Columns.mp4
36.02MB
5. DataFrame Basics II/8. Removing Rows.mp4
49.62MB
5. DataFrame Basics II/9. Adding new Columns to a DataFrame.mp4
17.88MB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/2. Best Practice (How you should do it).mp4
52.6MB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/3. Chained Indexing How you should NOT do it (Part 1).mp4
60.07MB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/4. Chained Indexing How you should NOT do it (Part 2).mp4
58.85MB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/5. View vs. Copy.mp4
34.54MB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/6. Simple Rules what to do when....mp4
45.85MB
6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/9. Coding Exercise 6 (Solution).mp4
39.4MB
7. DataFrame Basics III/10. Hierarchical Indexing (Part 1).mp4
72.59MB
7. DataFrame Basics III/11. Hierarchical Indexing (Part 2).mp4
72.59MB
7. DataFrame Basics III/12. String Operations (Part 1).mp4
41.19MB
7. DataFrame Basics III/13. String Operations (Part 2).mp4
55.19MB
7. DataFrame Basics III/15. Coding Exercise 8 (Solution).mp4
58.22MB
7. DataFrame Basics III/2. Sorting DataFrames with sort_index() and sort_values() (Version 1.0 Update).mp4
68.86MB
7. DataFrame Basics III/3. Ranking DataFrames with rank().mp4
43.48MB
7. DataFrame Basics III/4. nunique() and nlargest() nsmallest() with DataFrames.mp4
32.6MB
7. DataFrame Basics III/5. Summary Statistics and Accumulations.mp4
57.47MB
7. DataFrame Basics III/6. The agg() method.mp4
22.83MB
7. DataFrame Basics III/8. Coding Exercise 7 (Solution).mp4
39.82MB
7. DataFrame Basics III/9. User-defined Functions with apply(), map() and applymap().mp4
74.33MB
8. Visualization with Matplotlib/2. The plot() method.mp4
70.25MB
8. Visualization with Matplotlib/3. Customization of Plots.mp4
102.99MB
8. Visualization with Matplotlib/4. Histograms (Part 1).mp4
24.58MB
8. Visualization with Matplotlib/5. Histograms (Part 2).mp4
34.13MB
8. Visualization with Matplotlib/6. Barcharts and Piecharts.mp4
19.99MB
8. Visualization with Matplotlib/7. Scatterplots.mp4
36.15MB
8. Visualization with Matplotlib/9. Coding Exercise 9 (Solution).mp4
36.78MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统