首页 磁力链接怎么用

[FreeCoursesOnline.Me] Coursera - Deep Learning in Computer Vision

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2018-9-21 02:57 2025-1-6 04:02 126 1.12 GB 51
二维码链接
[FreeCoursesOnline.Me] Coursera - Deep Learning in Computer Vision的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 001.Introduction and digital images/001. Short introduction to computer vision.mp415.33MB
  2. 001.Introduction and digital images/002. Digital images.mp412.19MB
  3. 001.Introduction and digital images/003. Structure of human eye and vision.mp422.27MB
  4. 001.Introduction and digital images/004. Color models.mp457.71MB
  5. 002.Basic image processing/005. Image processing goals and tasks.mp410.78MB
  6. 002.Basic image processing/006. Contrast and brightness correction.mp419.67MB
  7. 002.Basic image processing/007. Image convolution.mp426.04MB
  8. 002.Basic image processing/008. Edge detection.mp431.89MB
  9. 003.Image classification/009. Recap Image classification.mp432.43MB
  10. 003.Image classification/010. AlexNet, VGG and Inception architectures.mp443.84MB
  11. 003.Image classification/011. ResNet and beyond.mp443.16MB
  12. 003.Image classification/012. Fine-grained image recognition.mp425.35MB
  13. 003.Image classification/013. Detection and classification of facial attributes.mp424.08MB
  14. 004.Content-based image retrieval/014. Content-based image retrieval.mp431.59MB
  15. 004.Content-based image retrieval/015. Computing semantic image embeddings using convolutional neural networks.mp435.61MB
  16. 004.Content-based image retrieval/016. Employing indexing structures for efficient retrieval of semantic neighbors.mp437.34MB
  17. 004.Content-based image retrieval/017. Face verification.mp425.18MB
  18. 004.Content-based image retrieval/018. The re-identification problem in computer vision.mp421.1MB
  19. 005.Keypoints regression/019. Facial keypoints regression.mp425.6MB
  20. 005.Keypoints regression/020. CNN for keypoints regression.mp423.24MB
  21. 006.Sliding window detectors/021. Object detection problem.mp422.44MB
  22. 006.Sliding window detectors/022. Sliding windows.mp411.75MB
  23. 006.Sliding window detectors/023. HOG-based detector.mp49.14MB
  24. 006.Sliding window detectors/024. Detector training.mp411.72MB
  25. 006.Sliding window detectors/025. Viola-Jones face detector.mp419.45MB
  26. 006.Sliding window detectors/026. Attentional cascades and neural networks.mp412.22MB
  27. 007.Modern detector architectures/027. Region-based convolutional neural network.mp410.69MB
  28. 007.Modern detector architectures/028. From R-CNN to Fast R-CNN.mp417.8MB
  29. 007.Modern detector architectures/029. Faster R-CNN.mp415.76MB
  30. 007.Modern detector architectures/030. Region-based fully-convolutional network.mp48.52MB
  31. 007.Modern detector architectures/031. Single shot detectors.mp414.47MB
  32. 007.Modern detector architectures/032. Speed vs. accuracy tradeoff.mp47.06MB
  33. 007.Modern detector architectures/033. Fun with pedestrian detectors.mp45.84MB
  34. 008.Object tracking/034. Introduction to video analysis.mp412.65MB
  35. 008.Object tracking/035. Optical flow.mp417.35MB
  36. 008.Object tracking/036. Deep learning in optical flow estimation.mp419MB
  37. 008.Object tracking/037. Visual object tracking.mp418.75MB
  38. 008.Object tracking/038. Examples of visual object tracking methods.mp442.92MB
  39. 008.Object tracking/039. Multiple object tracking.mp418.16MB
  40. 008.Object tracking/040. Examples of multiple object tracking methods.mp426.34MB
  41. 009.Action recognition/041. Introduction to action recognition.mp421.89MB
  42. 009.Action recognition/042. Action classification.mp426.62MB
  43. 009.Action recognition/043. Action classification with convolutional neural networks.mp418.79MB
  44. 009.Action recognition/044. Action localization.mp422.39MB
  45. 010.Image segmentation/045. Image segmentation.mp416.02MB
  46. 010.Image segmentation/046. Oversegmentation.mp417.84MB
  47. 010.Image segmentation/047. Deep learning models for image segmentation.mp432.72MB
  48. 010.Image segmentation/048. Human pose estimation as image segmentation.mp433.42MB
  49. 011.Style transfer and image generation/049. Style transfer.mp422.66MB
  50. 011.Style transfer and image generation/050. Generative adversarial networks.mp429.46MB
  51. 011.Style transfer and image generation/051. Image transformation with neural networks.mp422.74MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统