首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
Data Analysis with Pandas and Python
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2018-7-27 16:09
2025-1-20 16:30
151
2.33 GB
173
磁力链接
magnet:?xt=urn:btih:b87385f0d8f1fc9fa342f8b4e3ed2473465dfe88
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOmI4NzM4NWYwZDhmMWZjOWZhMzQyZjhiNGUzZWQyNDczNDY1ZGZlODhaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
Data
Analysis
with
Pandas
and
Python
文件列表
01 Installation and Setup/006 Mac OS - Update Anaconda Libraries.mp4
35.27MB
01 Installation and Setup/001 Introduction to the Course.mp4
34MB
01 Installation and Setup/003 Mac OS - Download the Anaconda Distribution.mp4
7.92MB
01 Installation and Setup/004 Mac OS - Install Anaconda Distribution.mp4
22.76MB
01 Installation and Setup/005 Mac OS - Access the Terminal.mp4
8.84MB
01 Installation and Setup/007 Mac OS - Unpack Course Materials The Startdown and Shutdown Process.mp4
22.15MB
01 Installation and Setup/008 Windows - Download the Anaconda Distribution.mp4
9.27MB
01 Installation and Setup/009 Windows - Install Anaconda Distribution.mp4
18.58MB
01 Installation and Setup/010 Windows - Access the Command Prompt and Update Anaconda Libraries.mp4
22.5MB
01 Installation and Setup/011 Windows - Unpack Course Materials The Startdown and Shutdown Process.mp4
17.72MB
01 Installation and Setup/012 Intro to the Jupyter Notebook Interface.mp4
9.31MB
01 Installation and Setup/013 Cell Types and Cell Modes.mp4
11.67MB
01 Installation and Setup/014 Code Cell Execution.mp4
8.22MB
01 Installation and Setup/015 Popular Keyboard Shortcuts.mp4
6.26MB
01 Installation and Setup/016 Import Libraries into Jupyter Notebook.mp4
11.53MB
01 Installation and Setup/017 Python Crash Course Part 1 - Data Types and Variables.mp4
11.98MB
01 Installation and Setup/018 Python Crash Course Part 2 - Lists.mp4
9MB
01 Installation and Setup/019 Python Crash Course Part 3 - Dictionaries.mp4
7.2MB
01 Installation and Setup/020 Python Crash Course Part 4 - Operators.mp4
7.87MB
01 Installation and Setup/021 Python Crash Course Part 5 - Functions.mp4
10.12MB
02 Series/022 Create Jupyter Notebook for the Series Module.mp4
3.8MB
02 Series/023 Create A Series Object from a Python List.mp4
18.12MB
02 Series/024 Create A Series Object from a Python Dictionary.mp4
5.19MB
02 Series/025 Intro to Attributes.mp4
12.85MB
02 Series/026 Intro to Methods.mp4
7.91MB
02 Series/027 Parameters and Arguments.mp4
18.28MB
02 Series/028 Import Series with the .read_csv() Method.mp4
21.14MB
02 Series/029 The .head() and .tail() Methods.mp4
6.47MB
02 Series/030 Python Built-In Functions.mp4
9.87MB
02 Series/031 More Series Attributes.mp4
11.66MB
02 Series/032 The .sort_values() Method.mp4
10.83MB
02 Series/033 The inplace Parameter.mp4
9.39MB
02 Series/034 The .sort_index() Method.mp4
8.57MB
02 Series/035 Pythons in Keyword.mp4
7.3MB
02 Series/036 Extract Series Values by Index Position.mp4
8.9MB
02 Series/037 Extract Series Values by Index Label.mp4
13.73MB
02 Series/038 The .get() Method on a Series.mp4
9.56MB
02 Series/039 Math Methods on Series Objects.mp4
10.16MB
02 Series/040 The .idxmax() and .idxmin() Methods.mp4
5.75MB
02 Series/041 The .value_counts() Method.mp4
6.73MB
02 Series/042 The .apply() Method.mp4
12.31MB
02 Series/043 The .map() Method.mp4
13.09MB
03 DataFrames I/044 Intro to DataFrames I Module.mp4
17.63MB
03 DataFrames I/045 Shared Methods and Attributes between Series and DataFrames.mp4
15.62MB
03 DataFrames I/046 Differences between Shared Methods.mp4
13.1MB
03 DataFrames I/047 Select One Column from a DataFrame.mp4
14.87MB
03 DataFrames I/048 Select Two or More Columns from a DataFrame.mp4
9.93MB
03 DataFrames I/049 Add New Column to DataFrame.mp4
17.23MB
03 DataFrames I/050 Broadcasting Operations.mp4
18.23MB
03 DataFrames I/051 A Review of the .value_counts() Method.mp4
8.42MB
03 DataFrames I/052 Drop Rows with Null Values.mp4
19.2MB
03 DataFrames I/053 Fill in Null Values with the .fillna() Method.mp4
10.75MB
03 DataFrames I/054 The .astype() Method.mp4
23.86MB
03 DataFrames I/055 Sort a DataFrame with the .sort_values() Method Part I.mp4
13.27MB
03 DataFrames I/056 Sort a DataFrame with the .sort_values() Method Part II.mp4
8.83MB
03 DataFrames I/057 Sort DataFrame with the .sort_index() Method.mp4
6.56MB
03 DataFrames I/058 Rank Values with the .rank() Method.mp4
13.16MB
04 DataFrames II/059 This Modules Dataset Memory Optimization.mp4
24.44MB
04 DataFrames II/060 Filter a DataFrame Based on A Condition.mp4
27.4MB
04 DataFrames II/061 Filter with More than One Condition (AND - ).mp4
9.29MB
04 DataFrames II/062 Filter with More than One Condition (OR - ).mp4
16.75MB
04 DataFrames II/063 The .isin() Method.mp4
12.53MB
04 DataFrames II/064 The .isnull() and .notnull() Methods.mp4
12.26MB
04 DataFrames II/065 The .between() Method.mp4
16.76MB
04 DataFrames II/066 The .duplicated() Method.mp4
19.56MB
04 DataFrames II/067 The .drop_duplicates() Method.mp4
17.55MB
04 DataFrames II/068 The .unique() and .nunique() Methods.mp4
8.19MB
05 DataFrames III/069 Intro to the DataFrames III Module Import Dataset.mp4
7.67MB
05 DataFrames III/070 The .set_index() and .reset_index() Methods.mp4
13.19MB
05 DataFrames III/071 Retrieve Rows by Index Label with .loc.mp4
25.87MB
05 DataFrames III/072 Retrieve Rows by Index Position with .iloc.mp4
13.3MB
05 DataFrames III/073 The Catch-All .ix Method.mp4
18.56MB
05 DataFrames III/074 Second Arguments to .loc .iloc and .ix Methods.mp4
12.36MB
05 DataFrames III/075 Set New Values for a Specific Cell or Row.mp4
8.89MB
05 DataFrames III/076 Set Multiple Values in DataFrame.mp4
20.54MB
05 DataFrames III/077 Rename Index Labels or Columns in a DataFrame.mp4
13.39MB
05 DataFrames III/078 Delete Rows or Columns from a DataFrame.mp4
16.21MB
05 DataFrames III/079 Create Random Sample with the .sample() Method.mp4
9.33MB
05 DataFrames III/080 The .nsmallest() and .nlargest() Methods.mp4
12.07MB
05 DataFrames III/081 Filtering with the .where() Method.mp4
13.56MB
05 DataFrames III/082 The .query() Method.mp4
19.92MB
05 DataFrames III/083 A Review of the .apply() Method on Single Columns.mp4
11.75MB
05 DataFrames III/084 The .apply() Method with Row Values.mp4
13.41MB
05 DataFrames III/085 The .copy() Method.mp4
15.44MB
06 Working with Text Data/086 Intro to the Working with Text Data Module.mp4
13.86MB
06 Working with Text Data/087 Common String Methods - lower upper title and len.mp4
14.88MB
06 Working with Text Data/088 The .str.replace() Method.mp4
16MB
06 Working with Text Data/089 Filtering with String Methods.mp4
15.54MB
06 Working with Text Data/090 More String Methods - strip lstrip and rstrip.mp4
9.54MB
06 Working with Text Data/091 String Methods on Index and Columns.mp4
11.12MB
06 Working with Text Data/092 Split Strings by Characters with .str.split() Method.mp4
17.52MB
06 Working with Text Data/093 More Practice with Splits.mp4
11.92MB
06 Working with Text Data/094 The expand and n Parameters of the .str.split() Method.mp4
15.3MB
07 MultiIndex/095 Intro to the MultiIndex Module.mp4
8.32MB
07 MultiIndex/096 Create a MultiIndex with the set_index() Method.mp4
21.05MB
07 MultiIndex/097 The .get_level_values() Method.mp4
16.54MB
07 MultiIndex/098 The .set_names() Method.mp4
6.09MB
07 MultiIndex/099 The sort_index() Method.mp4
10.25MB
07 MultiIndex/100 Extract Rows from a MultiIndex DataFrame.mp4
17.34MB
07 MultiIndex/101 The .transpose() Method and MultiIndex on Column Level.mp4
11.92MB
07 MultiIndex/102 The .swaplevel() Method.mp4
5.18MB
07 MultiIndex/103 The .stack() Method.mp4
13.19MB
07 MultiIndex/104 The .unstack() Method Part 1.mp4
8.48MB
07 MultiIndex/105 The .unstack() Method Part 2.mp4
14.53MB
07 MultiIndex/106 The .unstack() Method Part 3.mp4
11.96MB
07 MultiIndex/107 The .pivot() Method.mp4
12.11MB
07 MultiIndex/108 The .pivot_table() Method.mp4
22.16MB
07 MultiIndex/109 The pd.melt() Method.mp4
17.26MB
08 GroupBy/110 Intro to the Groupby Module.mp4
14.29MB
08 GroupBy/111 First Operations with groupby Object.mp4
23.08MB
08 GroupBy/112 Retrieve A Group with the .get_group() Method.mp4
10.14MB
08 GroupBy/113 Methods on the Groupby Object and DataFrame Columns.mp4
20.49MB
08 GroupBy/114 Grouping by Multiple Columns.mp4
10.34MB
08 GroupBy/115 The .agg() Method.mp4
13.18MB
08 GroupBy/116 Iterating through Groups.mp4
21.37MB
09 Merging Joining and Concatenating/117 Intro to the Merging Joining and Concatenating Module.mp4
11.46MB
09 Merging Joining and Concatenating/118 The pd.concat() Method Part 1.mp4
12.56MB
09 Merging Joining and Concatenating/119 The pd.concat() Method Part 2.mp4
13.2MB
09 Merging Joining and Concatenating/120 The .append() Method on a DataFrame.mp4
5.13MB
09 Merging Joining and Concatenating/121 Inner Joins Part 1.mp4
17.92MB
09 Merging Joining and Concatenating/122 Inner Joins Part 2.mp4
17.75MB
09 Merging Joining and Concatenating/123 Outer Joins.mp4
25.94MB
09 Merging Joining and Concatenating/124 Left Joins.mp4
20.99MB
09 Merging Joining and Concatenating/125 The left_on and right_on Parameters.mp4
20.24MB
09 Merging Joining and Concatenating/126 Merging by Indexes with the left_index and right_index Parameters.mp4
22.7MB
09 Merging Joining and Concatenating/127 The .join() Method.mp4
6.27MB
09 Merging Joining and Concatenating/128 The pd.merge() Method.mp4
6.84MB
10 Working with Dates and Times/129 Intro to the Working with Dates and Times Module.mp4
6.32MB
10 Working with Dates and Times/130 Review of Pythons datetime Module.mp4
16.73MB
10 Working with Dates and Times/131 The pandas Timestamp Object.mp4
12.8MB
10 Working with Dates and Times/132 The pandas DateTimeIndex Object.mp4
9.65MB
10 Working with Dates and Times/133 The pd.to_datetime() Method.mp4
22.88MB
10 Working with Dates and Times/134 Create Range of Dates with the pd.date_range() Method Part 1.mp4
19.68MB
10 Working with Dates and Times/135 Create Range of Dates with the pd.date_range() Method Part 2.mp4
18.54MB
10 Working with Dates and Times/136 Create Range of Dates with the pd.date_range() Method Part 3.mp4
16.33MB
10 Working with Dates and Times/137 The .dt Accessor.mp4
13.68MB
10 Working with Dates and Times/138 Install pandas-datareader Library.mp4
5.9MB
10 Working with Dates and Times/139 Import Financial Data Set with pandas_datareader Library.mp4
25.48MB
10 Working with Dates and Times/140 Selecting Rows from a DataFrame with a DateTimeIndex.mp4
18.34MB
10 Working with Dates and Times/141 Timestamp Object Attributes.mp4
19.57MB
10 Working with Dates and Times/142 The .truncate() Method.mp4
9.04MB
10 Working with Dates and Times/143 pd.DateOffset Objects.mp4
25.58MB
10 Working with Dates and Times/144 More Fun with pd.DateOffset Objects.mp4
31.91MB
10 Working with Dates and Times/145 The pandas Timedelta Object.mp4
15.41MB
10 Working with Dates and Times/146 Timedeltas in a Dataset.mp4
19.55MB
11 Panels/147 Intro to the Module Fetch Panel Dataset from Google Finance.mp4
13.67MB
11 Panels/148 The Axes of a Panel Object.mp4
16.31MB
11 Panels/149 Panel Attributes.mp4
10.49MB
11 Panels/150 Use Bracket Notation to Extract a DataFrame from a Panel.mp4
8.25MB
11 Panels/151 Extracting with the .loc .iloc and .ix Methods.mp4
13.53MB
11 Panels/152 Convert Panel to a MultiIndex DataFrame (and Vice Versa).mp4
8.68MB
11 Panels/153 The .major_xs() Method.mp4
12.11MB
11 Panels/154 The .minor_xs() Method.mp4
13.62MB
11 Panels/155 Transpose a Panel with the .transpose() Method.mp4
15.73MB
11 Panels/156 The .swapaxes() Method.mp4
9.71MB
12 Input and Output/157 Intro to the Input and Output Module.mp4
2.8MB
12 Input and Output/158 Feed pd.read_csv() Method a URL Argument.mp4
7.6MB
12 Input and Output/159 Quick Object Conversions.mp4
11.35MB
12 Input and Output/160 Export DataFrame to CSV File with the .to_csv() Method.mp4
11.36MB
12 Input and Output/161 Install xlrd and openpyxl Libraries to Read and Write Excel Files.mp4
5.98MB
12 Input and Output/162 Import Excel File into pandas.mp4
19.13MB
12 Input and Output/163 Export Excel File.mp4
17.8MB
13 Visualization/164 Intro to Visualization Module.mp4
7.31MB
13 Visualization/165 The .plot() Method.mp4
18.97MB
13 Visualization/166 Modifying Aesthetics with Templates.mp4
12.08MB
13 Visualization/167 Bar Graphs.mp4
12.27MB
13 Visualization/168 Pie Charts.mp4
9.87MB
13 Visualization/169 Histograms.mp4
12.16MB
14 Options and Settings/170 Introduction to the Options and Settings Module.mp4
3.32MB
14 Options and Settings/171 Changing pandas Options with Attributes and Dot Syntax.mp4
19.83MB
14 Options and Settings/172 Changing pandas Options with Methods.mp4
13.92MB
14 Options and Settings/173 The precision Option.mp4
6.1MB
15 Conclusion/174 Conclusion.mp4
2.95MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统