首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[FreeAllCourse.Com] Udemy- The Complete Machine Learning Course with Python
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2019-12-24 17:45
2025-1-25 03:26
143
6.79 GB
108
磁力链接
magnet:?xt=urn:btih:be1c9559ddc8efb105665a8d97abca77b961d8c9
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOmJlMWM5NTU5ZGRjOGVmYjEwNTY2NWE4ZDk3YWJjYTc3Yjk2MWQ4YzlaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
FreeAllCourse
Com
Udemy-
The
Complete
Machine
Learning
Course
with
Python
文件列表
1. Introduction/1. What Does the Course Cover.mp4
54.4MB
10. Unsupervised Learning Clustering/1. Clustering.mp4
125.68MB
10. Unsupervised Learning Clustering/2. k_Means Clustering.mp4
57.72MB
11. Deep Learning/1. Estimating Simple Function with Neural Networks.mp4
143.85MB
11. Deep Learning/2. Neural Network Architecture.mp4
22.38MB
11. Deep Learning/3. Motivational Example - Project MNIST.mp4
144.96MB
11. Deep Learning/4. Binary Classification Problem.mp4
72.11MB
11. Deep Learning/5. Natural Language Processing - Binary Classification.mp4
76.05MB
12. Appendix A1 Foundations of Deep Learning/1. Introduction to Neural Networks.mp4
13.75MB
12. Appendix A1 Foundations of Deep Learning/10. Gradient Based Optimization.mp4
54.96MB
12. Appendix A1 Foundations of Deep Learning/11. Getting Started with Neural Network and Deep Learning Libraries.mp4
18.67MB
12. Appendix A1 Foundations of Deep Learning/12. Categories of Machine Learning.mp4
37.47MB
12. Appendix A1 Foundations of Deep Learning/13. Over and Under Fitting.mp4
70.06MB
12. Appendix A1 Foundations of Deep Learning/14. Machine Learning Workflow.mp4
27.44MB
12. Appendix A1 Foundations of Deep Learning/2. Differences between Classical Programming and Machine Learning.mp4
20.85MB
12. Appendix A1 Foundations of Deep Learning/3. Learning Representations.mp4
77.24MB
12. Appendix A1 Foundations of Deep Learning/4. What is Deep Learning.mp4
155.61MB
12. Appendix A1 Foundations of Deep Learning/5. Learning Neural Networks.mp4
40.61MB
12. Appendix A1 Foundations of Deep Learning/6. Why Now.mp4
9.07MB
12. Appendix A1 Foundations of Deep Learning/7. Building Block Introduction.mp4
14.16MB
12. Appendix A1 Foundations of Deep Learning/8. Tensors.mp4
16.88MB
12. Appendix A1 Foundations of Deep Learning/9. Tensor Operations.mp4
88.79MB
13. Computer Vision and Convolutional Neural Network (CNN)/1. Outline.mp4
63.66MB
13. Computer Vision and Convolutional Neural Network (CNN)/10. Training Your CNN 1.mp4
124.88MB
13. Computer Vision and Convolutional Neural Network (CNN)/11. Training Your CNN 2.mp4
128.54MB
13. Computer Vision and Convolutional Neural Network (CNN)/12. Loading Previously Trained Model.mp4
11.21MB
13. Computer Vision and Convolutional Neural Network (CNN)/13. Model Performance Comparison.mp4
79.75MB
13. Computer Vision and Convolutional Neural Network (CNN)/14. Data Augmentation.mp4
28.48MB
13. Computer Vision and Convolutional Neural Network (CNN)/15. Transfer Learning.mp4
97MB
13. Computer Vision and Convolutional Neural Network (CNN)/16. Feature Extraction.mp4
111.14MB
13. Computer Vision and Convolutional Neural Network (CNN)/17. State of the Art Tools.mp4
35.41MB
13. Computer Vision and Convolutional Neural Network (CNN)/2. Neural Network Revision.mp4
43.81MB
13. Computer Vision and Convolutional Neural Network (CNN)/3. Motivational Example.mp4
66.21MB
13. Computer Vision and Convolutional Neural Network (CNN)/4. Visualizing CNN.mp4
141.94MB
13. Computer Vision and Convolutional Neural Network (CNN)/5. Understanding CNN.mp4
30.03MB
13. Computer Vision and Convolutional Neural Network (CNN)/6. Layer - Input.mp4
29.13MB
13. Computer Vision and Convolutional Neural Network (CNN)/7. Layer - Filter.mp4
84.39MB
13. Computer Vision and Convolutional Neural Network (CNN)/8. Activation Function.mp4
32.32MB
13. Computer Vision and Convolutional Neural Network (CNN)/9. Pooling, Flatten, Dense.mp4
88.13MB
2. Getting Started with Anaconda/1. Installing Applications and Creating Environment.mp4
38.42MB
2. Getting Started with Anaconda/2. Hello World.mp4
51.22MB
2. Getting Started with Anaconda/3. Iris Project 1 Working with Error Messages.mp4
89.84MB
2. Getting Started with Anaconda/4. Iris Project 2 Reading CSV Data into Memory.mp4
64.56MB
2. Getting Started with Anaconda/5. Iris Project 3 Loading data from Seaborn.mp4
55.87MB
2. Getting Started with Anaconda/6. Iris Project 4 Visualization.mp4
93.49MB
3. Regression/1. Scikit-Learn.mp4
48.45MB
3. Regression/10. Multiple Regression 2.mp4
91.15MB
3. Regression/11. Regularized Regression.mp4
44.35MB
3. Regression/12. Polynomial Regression.mp4
110.78MB
3. Regression/13. Dealing with Non-linear Relationships.mp4
62.69MB
3. Regression/14. Feature Importance.mp4
36.25MB
3. Regression/15. Data Preprocessing.mp4
135.55MB
3. Regression/16. Variance-Bias Trade Off.mp4
68.7MB
3. Regression/17. Learning Curve.mp4
56.37MB
3. Regression/18. Cross Validation.mp4
48.04MB
3. Regression/19. CV Illustration.mp4
127.23MB
3. Regression/2. EDA.mp4
151.67MB
3. Regression/3. Correlation Analysis and Feature Selection.mp4
22.58MB
3. Regression/4. Correlation Analysis and Feature Selection.mp4
105.19MB
3. Regression/5. Linear Regression with Scikit-Learn.mp4
76.98MB
3. Regression/6. Five Steps Machine Learning Process.mp4
77.27MB
3. Regression/7. Robust Regression.mp4
119.06MB
3. Regression/8. Evaluate Regression Model Performance.mp4
99.66MB
3. Regression/9. Multiple Regression 1.mp4
125.51MB
4. Classification/1. Logistic Regression.mp4
119.59MB
4. Classification/10. Precision Recall Tradeoff.mp4
102.01MB
4. Classification/11. Altering the Precision Recall Tradeoff.mp4
20.93MB
4. Classification/12. ROC.mp4
52.22MB
4. Classification/2. Introduction to Classification.mp4
42.12MB
4. Classification/3. Understanding MNIST.mp4
108.98MB
4. Classification/4. SGD.mp4
57.3MB
4. Classification/5. Performance Measure and Stratified k-Fold.mp4
51.54MB
4. Classification/6. Confusion Matrix.mp4
54.71MB
4. Classification/7. Precision.mp4
23.59MB
4. Classification/8. Recall.mp4
19.64MB
4. Classification/9. f1.mp4
12.11MB
5. Support Vector Machine (SVM)/1. Support Vector Machine (SVM) Concepts.mp4
37.87MB
5. Support Vector Machine (SVM)/2. Linear SVM Classification.mp4
80.94MB
5. Support Vector Machine (SVM)/3. Polynomial Kernel.mp4
34.96MB
5. Support Vector Machine (SVM)/4. Radial Basis Function.mp4
70.13MB
5. Support Vector Machine (SVM)/5. Support Vector Regression.mp4
59.68MB
6. Tree/1. Introduction to Decision Tree.mp4
43.86MB
6. Tree/2. Training and Visualizing a Decision Tree.mp4
51.4MB
6. Tree/3. Visualizing Boundary.mp4
54.72MB
6. Tree/4. Tree Regression, Regularization and Over Fitting.mp4
40.05MB
6. Tree/5. End to End Modeling.mp4
35.62MB
6. Tree/6. Project HR.mp4
177.83MB
6. Tree/7. Project HR with Google Colab.mp4
66.57MB
7. Ensemble Machine Learning/1. Ensemble Learning Methods Introduction.mp4
37.17MB
7. Ensemble Machine Learning/10. Ensemble of ensembles Part 2.mp4
37.85MB
7. Ensemble Machine Learning/2. Bagging.mp4
165.44MB
7. Ensemble Machine Learning/3. Random Forests and Extra-Trees.mp4
80.28MB
7. Ensemble Machine Learning/4. AdaBoost.mp4
49.85MB
7. Ensemble Machine Learning/5. Gradient Boosting Machine.mp4
21.96MB
7. Ensemble Machine Learning/6. XGBoost Installation.mp4
22.26MB
7. Ensemble Machine Learning/7. XGBoost.mp4
35.05MB
7. Ensemble Machine Learning/8. Project HR - Human Resources Analytics.mp4
59.21MB
7. Ensemble Machine Learning/9. Ensemble of Ensembles Part 1.mp4
46.4MB
8. k-Nearest Neighbours (kNN)/1. kNN Introduction.mp4
62.95MB
8. k-Nearest Neighbours (kNN)/2. Project Cancer Detection.mp4
75.73MB
8. k-Nearest Neighbours (kNN)/4. Project Cancer Detection Part 1.mp4
49.4MB
9. Unsupervised Learning Dimensionality Reduction/1. Dimensionality Reduction Concept.mp4
31.37MB
9. Unsupervised Learning Dimensionality Reduction/2. PCA Introduction.mp4
49.03MB
9. Unsupervised Learning Dimensionality Reduction/3. Project Wine.mp4
47.87MB
9. Unsupervised Learning Dimensionality Reduction/4. Kernel PCA.mp4
36.61MB
9. Unsupervised Learning Dimensionality Reduction/5. Kernel PCA Demo.mp4
21.44MB
9. Unsupervised Learning Dimensionality Reduction/6. LDA vs PCA.mp4
34.15MB
9. Unsupervised Learning Dimensionality Reduction/7. Project Abalone.mp4
30.74MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统