首页 磁力链接怎么用

[DesireCourse.Net] Udemy - Machine Learning, incl. Deep Learning, with R

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2019-11-4 19:16 2024-10-15 17:16 146 7.26 GB 142
二维码链接
[DesireCourse.Net] Udemy - Machine Learning, incl. Deep Learning, with R的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Introduction/1. Course Overview.mp410.37MB
  2. 1. Introduction/2. AI 101.mp429.52MB
  3. 1. Introduction/3. Machine Learning 101.mp431.15MB
  4. 1. Introduction/4. Models.mp427.65MB
  5. 1. Introduction/5. Teaser Overview.mp46.24MB
  6. 1. Introduction/6. Teaser Lab.mp4126.51MB
  7. 10. Random Forests/1. Random Forests 101.mp410.82MB
  8. 10. Random Forests/2. Random Forests Interactive.mp417.53MB
  9. 10. Random Forests/3. Random Forest Lab (Intro).mp414.84MB
  10. 10. Random Forests/4. Random Forest Lab (Coding 12).mp4109.85MB
  11. 10. Random Forests/5. Random Forest Lab (Coding 22).mp4107.1MB
  12. 10. Random Forests/6. Random Forest Exercise.mp422.07MB
  13. 11. Logistic Regression/1. Logistic Regression 101.mp427.64MB
  14. 11. Logistic Regression/2. Logistic Regression Lab (Intro).mp48.79MB
  15. 11. Logistic Regression/3. Logistic Regression Lab (Coding 12).mp491.93MB
  16. 11. Logistic Regression/4. Logistic Regression Lab (Coding 22).mp463.11MB
  17. 11. Logistic Regression/5. Logistic Regression Exercise.mp410.68MB
  18. 12. Support Vector Machines/1. Support Vector Machines 101.mp421.84MB
  19. 12. Support Vector Machines/2. Support Vector Machines Lab (Intro).mp413.6MB
  20. 12. Support Vector Machines/3. Support Vector Machines Lab (Coding 12).mp478.82MB
  21. 12. Support Vector Machines/4. Support Vector Machines Lab (Coding 22).mp442.15MB
  22. 12. Support Vector Machines/5. Support Vector Machines Exercise.mp421.2MB
  23. 13. Ensemble Models/1. Ensemble Models 101.mp412.06MB
  24. 14. ----- Association Rules -----/1. Association Rules 101.mp420.87MB
  25. 14. ----- Association Rules -----/2. How to get the code.mp48.83MB
  26. 15. Apriori/1. Apriori 101.mp429.9MB
  27. 15. Apriori/2. Apriori Lab (Intro).mp418.09MB
  28. 15. Apriori/3. Apriori Lab (Coding 12).mp473.35MB
  29. 15. Apriori/4. Apriori Lab (Coding 22).mp4113.44MB
  30. 15. Apriori/5. Apriori Exercise.mp417.25MB
  31. 15. Apriori/6. Apriori Solution.mp4100.14MB
  32. 16. ----- Clustering -----/1. Clustering Overview.mp410.12MB
  33. 16. ----- Clustering -----/2. How to get the code.mp48.81MB
  34. 17. kmeans/1. kmeans 101.mp431.74MB
  35. 17. kmeans/2. kmeans Lab.mp4159.88MB
  36. 17. kmeans/3. kmeans Exercise.mp427.55MB
  37. 17. kmeans/4. kmeans Solution.mp4106.36MB
  38. 18. Hierarchical Clustering/1. Hierarchical Clustering 101.mp432.4MB
  39. 18. Hierarchical Clustering/2. Hierarchical Clustering Interactive.mp434.11MB
  40. 18. Hierarchical Clustering/3. Hierarchical Clustering Lab.mp4189.25MB
  41. 19. Dbscan/1. Dbscan 101.mp431.32MB
  42. 19. Dbscan/2. Dbscan Lab.mp4111.43MB
  43. 2. R Refresher/1. R and RStudio Installation.mp4102.32MB
  44. 2. R Refresher/2. How to get the code.mp48.83MB
  45. 2. R Refresher/3. Rmarkdown Lab.mp465.81MB
  46. 2. R Refresher/4. Piping 101.mp49.41MB
  47. 2. R Refresher/5. Data Manipulation Lab.mp4104.59MB
  48. 2. R Refresher/6. Data Reshaping 101.mp418.81MB
  49. 2. R Refresher/7. Data Reshaping Lab.mp4103.14MB
  50. 2. R Refresher/8. Packages Preparation Lab.mp412.32MB
  51. 21. Principal Component Analysis (PCA)/1. PCA 101.mp441.79MB
  52. 21. Principal Component Analysis (PCA)/2. PCA Lab.mp4126.99MB
  53. 21. Principal Component Analysis (PCA)/3. PCA Exercise.mp415.24MB
  54. 21. Principal Component Analysis (PCA)/4. PCA Solution.mp480.96MB
  55. 22. t-SNE/1. t-SNE 101.mp419.97MB
  56. 22. t-SNE/2. t-SNE Lab (Sphere).mp457.38MB
  57. 22. t-SNE/3. t-SNE Lab (Mnist).mp470.37MB
  58. 23. Factor Analysis/1. Factor Analysis 101.mp434.98MB
  59. 23. Factor Analysis/2. Factor Analysis Lab (Intro).mp416.51MB
  60. 23. Factor Analysis/3. Factor Analysis Lab (Coding 12).mp478.66MB
  61. 23. Factor Analysis/4. Factor Analysis Lab (Coding 22).mp491.7MB
  62. 23. Factor Analysis/5. Factor Analysis Exercise.mp413.23MB
  63. 24. ----- Reinforcement Learning -----/1. Reinforcement Learning 101.mp437.44MB
  64. 24. ----- Reinforcement Learning -----/2. Upper Confidence Bound 101.mp450.41MB
  65. 24. ----- Reinforcement Learning -----/3. Upper Confidence Bound Interactive.mp446.49MB
  66. 24. ----- Reinforcement Learning -----/4. How to get the code.mp48.83MB
  67. 24. ----- Reinforcement Learning -----/5. Upper Confidence Bound Lab (Intro).mp413.12MB
  68. 24. ----- Reinforcement Learning -----/6. Upper Confidence Bound Lab (Coding 12).mp4138.26MB
  69. 24. ----- Reinforcement Learning -----/7. Upper Confidence Bound Lab (Coding 22).mp467.11MB
  70. 25. ----- Deep Learning -----/1. Deep Learning General Overview.mp426.37MB
  71. 25. ----- Deep Learning -----/10. How to get the code.mp48.82MB
  72. 25. ----- Deep Learning -----/11. Python and Keras Installation.mp472.66MB
  73. 25. ----- Deep Learning -----/2. Deep Learning Modeling 101.mp412.39MB
  74. 25. ----- Deep Learning -----/3. Performance.mp411.16MB
  75. 25. ----- Deep Learning -----/4. From Perceptron to Neural Networks.mp419.76MB
  76. 25. ----- Deep Learning -----/5. Layer Types.mp421.74MB
  77. 25. ----- Deep Learning -----/6. Activation Functions.mp420.74MB
  78. 25. ----- Deep Learning -----/7. Loss Function.mp413.88MB
  79. 25. ----- Deep Learning -----/8. Optimizer.mp422.33MB
  80. 25. ----- Deep Learning -----/9. Deep Learning Frameworks.mp49.47MB
  81. 26. Deep Learning Regression/1. Multi-Target Regression Lab (Intro).mp413.33MB
  82. 26. Deep Learning Regression/2. Multi-Target Regression Lab (Coding 12).mp4119.06MB
  83. 26. Deep Learning Regression/3. Multi-Target Regression Lab (Coding 22).mp498.84MB
  84. 27. Deep Learning Classification/1. Binary Classification Lab (Intro).mp415.28MB
  85. 27. Deep Learning Classification/2. Binary Classification Lab (Coding 12).mp4121.03MB
  86. 27. Deep Learning Classification/3. Binary Classification Lab (Coding 22).mp467.87MB
  87. 27. Deep Learning Classification/4. Multi-Label Classification Lab (Intro).mp424.42MB
  88. 27. Deep Learning Classification/5. Multi-Label Classification Lab (Coding 13).mp4109.73MB
  89. 27. Deep Learning Classification/6. Multi-Label Classification Lab (Coding 23).mp4128.81MB
  90. 27. Deep Learning Classification/7. Multi-Label Classification Lab (Coding 33).mp462.74MB
  91. 28. Convolutional Neural Networks/1. Convolutional Neural Networks 101.mp444.26MB
  92. 28. Convolutional Neural Networks/2. Convolutional Neural Networks Interactive.mp418.16MB
  93. 28. Convolutional Neural Networks/3. Convolutional Neural Networks Lab (Intro).mp412.13MB
  94. 28. Convolutional Neural Networks/4. Convolutional Neural Networks Lab (Coding).mp4189.77MB
  95. 28. Convolutional Neural Networks/5. Convolutional Neural Networks Exercise.mp423.73MB
  96. 28. Convolutional Neural Networks/6. Semantic Segmentation 101.mp457.94MB
  97. 28. Convolutional Neural Networks/7. Semantic Segmentation Lab (Intro).mp425.49MB
  98. 28. Convolutional Neural Networks/8. Semantic Segmentation Lab (Coding).mp425.48MB
  99. 29. Autoencoders/1. Autoencoders 101.mp416.71MB
  100. 29. Autoencoders/2. Autoencoders Lab (Intro).mp415.11MB
  101. 29. Autoencoders/3. Autoencoders Lab (Coding).mp4105.45MB
  102. 3. ----- Regression, Model Preparation, and Regularization -----/2. How to get the code.mp48.83MB
  103. 30. Transfer Learning and Pretrained Models/1. Transfer Learning and Pretrained Models 101.mp432.78MB
  104. 30. Transfer Learning and Pretrained Models/2. Transfer Learning and Pretrained Models Lab (Introduction).mp413.63MB
  105. 30. Transfer Learning and Pretrained Models/3. Transfer Learning and Pretrained Models Lab (Coding).mp499.41MB
  106. 31. Recurrent Neural Networks/1. Recurrent Neural Networks 101.mp429.49MB
  107. 31. Recurrent Neural Networks/2. LSTM Univariate, Multistep Timeseries Prediction (Intro).mp413.62MB
  108. 31. Recurrent Neural Networks/3. LSTM Univariate, Multistep Timeseries Prediction (Coding).mp4146.57MB
  109. 31. Recurrent Neural Networks/4. LSTM Multivariate, Multistep Timeseries Prediction (Intro).mp412.02MB
  110. 31. Recurrent Neural Networks/5. LSTM Multivariate, Multistep Timeseries Prediction (Coding).mp4141.53MB
  111. 4. Regression/1. Regression Types 101.mp417.74MB
  112. 4. Regression/10. Multivariate Regression Lab.mp4135.7MB
  113. 4. Regression/11. Multivariate Regression Exercise.mp413.69MB
  114. 4. Regression/12. Multivariate Regression Solution.mp4122.64MB
  115. 4. Regression/2. Univariate Regression 101.mp425.59MB
  116. 4. Regression/3. Univariate Regression Interactive.mp421.85MB
  117. 4. Regression/4. Univariate Regression Lab.mp488.4MB
  118. 4. Regression/5. Univariate Regression Exercise.mp418.16MB
  119. 4. Regression/6. Univariate Regression Solution.mp471.32MB
  120. 4. Regression/7. Polynomial Regression 101.mp411.35MB
  121. 4. Regression/8. Polynomial Regression Lab.mp4117.62MB
  122. 4. Regression/9. Multivariate Regression 101.mp422.44MB
  123. 5. Model Preparation and Evaluation/1. Underfitting Overfitting 101.mp456.1MB
  124. 5. Model Preparation and Evaluation/2. Train Validation Test Split 101.mp413.51MB
  125. 5. Model Preparation and Evaluation/3. Train Validation Test Split Interactive.mp436MB
  126. 5. Model Preparation and Evaluation/4. Train Validation Test Split Lab.mp4117.4MB
  127. 5. Model Preparation and Evaluation/5. Resampling Techniques 101.mp417.2MB
  128. 5. Model Preparation and Evaluation/6. Resampling Techniques Lab.mp4188.6MB
  129. 6. Regularization/1. Regularization 101.mp423.77MB
  130. 6. Regularization/2. Regularization Lab.mp4189.57MB
  131. 7. ----- Classification -----/2. How to get the code.mp48.84MB
  132. 8. Classification Basics/1. Confusion Matrix 101.mp428.88MB
  133. 8. Classification Basics/2. ROC Curve 101.mp448.01MB
  134. 8. Classification Basics/3. ROC Curve Interactive.mp443.5MB
  135. 8. Classification Basics/4. ROC Curve Lab Intro.mp412.6MB
  136. 8. Classification Basics/5. ROC Curve Lab 13 (Data Prep, Modeling).mp4118.06MB
  137. 8. Classification Basics/6. ROC Curve Lab 23 (Confusion Matrix and ROC).mp470.79MB
  138. 8. Classification Basics/7. ROC Curve Lab 33 (ROC, AUC, Cost Function).mp4135.48MB
  139. 9. Decision Trees/1. Decision Trees 101.mp420.53MB
  140. 9. Decision Trees/2. Decision Trees Lab (Intro).mp410.63MB
  141. 9. Decision Trees/3. Decision Trees Lab (Coding).mp4121.02MB
  142. 9. Decision Trees/4. Decision Trees Exercise.mp414.13MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统