首页 磁力链接怎么用

[GigaCourse.Com] Udemy - A deep understanding of deep learning (with Python intro)

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2022-8-26 21:50 2025-1-26 08:34 222 21.97 GB 262
二维码链接
[GigaCourse.Com] Udemy - A deep understanding of deep learning (with Python intro)的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 01 - Introduction/001 How to learn from this course.mp454.97MB
  2. 01 - Introduction/002 Using Udemy like a pro.mp454.37MB
  3. 02 - Download all course materials/001 Downloading and using the code.mp445.65MB
  4. 02 - Download all course materials/002 My policy on code-sharing.mp410.24MB
  5. 03 - Concepts in deep learning/001 What is an artificial neural network.mp465.38MB
  6. 03 - Concepts in deep learning/002 How models learn.mp472.79MB
  7. 03 - Concepts in deep learning/003 The role of DL in science and knowledge.mp434.76MB
  8. 03 - Concepts in deep learning/004 Running experiments to understand DL.mp474.84MB
  9. 03 - Concepts in deep learning/005 Are artificial neurons like biological neurons.mp4114.65MB
  10. 04 - About the Python tutorial/001 Should you watch the Python tutorial.mp423.77MB
  11. 05 - Math, numpy, PyTorch/002 Introduction to this section.mp411.12MB
  12. 05 - Math, numpy, PyTorch/003 Spectral theories in mathematics.mp451.06MB
  13. 05 - Math, numpy, PyTorch/004 Terms and datatypes in math and computers.mp438.08MB
  14. 05 - Math, numpy, PyTorch/005 Converting reality to numbers.mp433.21MB
  15. 05 - Math, numpy, PyTorch/006 Vector and matrix transpose.mp437.66MB
  16. 05 - Math, numpy, PyTorch/007 OMG it's the dot product!.mp450.11MB
  17. 05 - Math, numpy, PyTorch/008 Matrix multiplication.mp485.67MB
  18. 05 - Math, numpy, PyTorch/009 Softmax.mp495.96MB
  19. 05 - Math, numpy, PyTorch/010 Logarithms.mp443.88MB
  20. 05 - Math, numpy, PyTorch/011 Entropy and cross-entropy.mp4106MB
  21. 05 - Math, numpy, PyTorch/012 Minmax and argminargmax.mp488.21MB
  22. 05 - Math, numpy, PyTorch/013 Mean and variance.mp481.42MB
  23. 05 - Math, numpy, PyTorch/014 Random sampling and sampling variability.mp485.42MB
  24. 05 - Math, numpy, PyTorch/015 Reproducible randomness via seeding.mp469.7MB
  25. 05 - Math, numpy, PyTorch/016 The t-test.mp481.36MB
  26. 05 - Math, numpy, PyTorch/017 Derivatives intuition and polynomials.mp480.3MB
  27. 05 - Math, numpy, PyTorch/018 Derivatives find minima.mp445.47MB
  28. 05 - Math, numpy, PyTorch/019 Derivatives product and chain rules.mp455.63MB
  29. 06 - Gradient descent/001 Overview of gradient descent.mp468.44MB
  30. 06 - Gradient descent/002 What about local minima.mp467.08MB
  31. 06 - Gradient descent/003 Gradient descent in 1D.mp4119.29MB
  32. 06 - Gradient descent/004 CodeChallenge unfortunate starting value.mp477.09MB
  33. 06 - Gradient descent/005 Gradient descent in 2D.mp496.38MB
  34. 06 - Gradient descent/006 CodeChallenge 2D gradient ascent.mp439.36MB
  35. 06 - Gradient descent/007 Parametric experiments on g.d.mp4135.61MB
  36. 06 - Gradient descent/008 CodeChallenge fixed vs. dynamic learning rate.mp4113.6MB
  37. 06 - Gradient descent/009 Vanishing and exploding gradients.mp430.24MB
  38. 06 - Gradient descent/010 Tangent Notebook revision history.mp49.88MB
  39. 07 - ANNs (Artificial Neural Networks)/001 The perceptron and ANN architecture.mp485.84MB
  40. 07 - ANNs (Artificial Neural Networks)/002 A geometric view of ANNs.mp470.88MB
  41. 07 - ANNs (Artificial Neural Networks)/003 ANN math part 1 (forward prop).mp473.12MB
  42. 07 - ANNs (Artificial Neural Networks)/004 ANN math part 2 (errors, loss, cost).mp448.47MB
  43. 07 - ANNs (Artificial Neural Networks)/005 ANN math part 3 (backprop).mp452.89MB
  44. 07 - ANNs (Artificial Neural Networks)/006 ANN for regression.mp4135.5MB
  45. 07 - ANNs (Artificial Neural Networks)/007 CodeChallenge manipulate regression slopes.mp4139.12MB
  46. 07 - ANNs (Artificial Neural Networks)/008 ANN for classifying qwerties.mp4151.12MB
  47. 07 - ANNs (Artificial Neural Networks)/009 Learning rates comparison.mp4168.64MB
  48. 07 - ANNs (Artificial Neural Networks)/010 Multilayer ANN.mp4144.7MB
  49. 07 - ANNs (Artificial Neural Networks)/011 Linear solutions to linear problems.mp450.37MB
  50. 07 - ANNs (Artificial Neural Networks)/012 Why multilayer linear models don't exist.mp426.46MB
  51. 07 - ANNs (Artificial Neural Networks)/013 Multi-output ANN (iris dataset).mp4186.77MB
  52. 07 - ANNs (Artificial Neural Networks)/014 CodeChallenge more qwerties!.mp495.1MB
  53. 07 - ANNs (Artificial Neural Networks)/015 Comparing the number of hidden units.mp471.15MB
  54. 07 - ANNs (Artificial Neural Networks)/016 Depth vs. breadth number of parameters.mp4132.07MB
  55. 07 - ANNs (Artificial Neural Networks)/017 Defining models using sequential vs. class.mp489.48MB
  56. 07 - ANNs (Artificial Neural Networks)/018 Model depth vs. breadth.mp4158.91MB
  57. 07 - ANNs (Artificial Neural Networks)/019 CodeChallenge convert sequential to class.mp451.44MB
  58. 07 - ANNs (Artificial Neural Networks)/021 Reflection Are DL models understandable yet.mp458.59MB
  59. 08 - Overfitting and cross-validation/001 What is overfitting and is it as bad as they say.mp473.13MB
  60. 08 - Overfitting and cross-validation/002 Cross-validation.mp488.19MB
  61. 08 - Overfitting and cross-validation/003 Generalization.mp432.44MB
  62. 08 - Overfitting and cross-validation/004 Cross-validation -- manual separation.mp498.3MB
  63. 08 - Overfitting and cross-validation/005 Cross-validation -- scikitlearn.mp4142.88MB
  64. 08 - Overfitting and cross-validation/006 Cross-validation -- DataLoader.mp4172.32MB
  65. 08 - Overfitting and cross-validation/007 Splitting data into train, devset, test.mp479.21MB
  66. 08 - Overfitting and cross-validation/008 Cross-validation on regression.mp460.35MB
  67. 09 - Regularization/001 Regularization Concept and methods.mp480.05MB
  68. 09 - Regularization/002 train() and eval() modes.mp438.34MB
  69. 09 - Regularization/003 Dropout regularization.mp4138.39MB
  70. 09 - Regularization/004 Dropout regularization in practice.mp4183.23MB
  71. 09 - Regularization/005 Dropout example 2.mp453.87MB
  72. 09 - Regularization/006 Weight regularization (L1L2) math.mp485.41MB
  73. 09 - Regularization/007 L2 regularization in practice.mp4110.47MB
  74. 09 - Regularization/008 L1 regularization in practice.mp499.44MB
  75. 09 - Regularization/009 Training in mini-batches.mp462.12MB
  76. 09 - Regularization/010 Batch training in action.mp489.1MB
  77. 09 - Regularization/011 The importance of equal batch sizes.mp460.11MB
  78. 09 - Regularization/012 CodeChallenge Effects of mini-batch size.mp495.42MB
  79. 10 - Metaparameters (activations, optimizers)/001 What are metaparameters.mp432.7MB
  80. 10 - Metaparameters (activations, optimizers)/002 The wine quality dataset.mp4143.5MB
  81. 10 - Metaparameters (activations, optimizers)/003 CodeChallenge Minibatch size in the wine dataset.mp4118.79MB
  82. 10 - Metaparameters (activations, optimizers)/004 Data normalization.mp459.81MB
  83. 10 - Metaparameters (activations, optimizers)/005 The importance of data normalization.mp464.65MB
  84. 10 - Metaparameters (activations, optimizers)/006 Batch normalization.mp476.81MB
  85. 10 - Metaparameters (activations, optimizers)/007 Batch normalization in practice.mp461.76MB
  86. 10 - Metaparameters (activations, optimizers)/008 CodeChallenge Batch-normalize the qwerties.mp441.43MB
  87. 10 - Metaparameters (activations, optimizers)/009 Activation functions.mp497.03MB
  88. 10 - Metaparameters (activations, optimizers)/010 Activation functions in PyTorch.mp491.46MB
  89. 10 - Metaparameters (activations, optimizers)/011 Activation functions comparison.mp473.9MB
  90. 10 - Metaparameters (activations, optimizers)/012 CodeChallenge Compare relu variants.mp463.97MB
  91. 10 - Metaparameters (activations, optimizers)/013 CodeChallenge Predict sugar.mp4122.1MB
  92. 10 - Metaparameters (activations, optimizers)/014 Loss functions.mp490.3MB
  93. 10 - Metaparameters (activations, optimizers)/015 Loss functions in PyTorch.mp4138.1MB
  94. 10 - Metaparameters (activations, optimizers)/016 More practice with multioutput ANNs.mp499.8MB
  95. 10 - Metaparameters (activations, optimizers)/017 Optimizers (minibatch, momentum).mp498.07MB
  96. 10 - Metaparameters (activations, optimizers)/018 SGD with momentum.mp462.1MB
  97. 10 - Metaparameters (activations, optimizers)/019 Optimizers (RMSprop, Adam).mp476.73MB
  98. 10 - Metaparameters (activations, optimizers)/020 Optimizers comparison.mp486.88MB
  99. 10 - Metaparameters (activations, optimizers)/021 CodeChallenge Optimizers and... something.mp449.77MB
  100. 10 - Metaparameters (activations, optimizers)/022 CodeChallenge Adam with L2 regularization.mp453MB
  101. 10 - Metaparameters (activations, optimizers)/023 Learning rate decay.mp496.9MB
  102. 10 - Metaparameters (activations, optimizers)/024 How to pick the right metaparameters.mp461.74MB
  103. 11 - FFNs (Feed-Forward Networks)/001 What are fully-connected and feedforward networks.mp425.53MB
  104. 11 - FFNs (Feed-Forward Networks)/002 The MNIST dataset.mp4101.38MB
  105. 11 - FFNs (Feed-Forward Networks)/003 FFN to classify digits.mp4161.85MB
  106. 11 - FFNs (Feed-Forward Networks)/004 CodeChallenge Binarized MNIST images.mp440.78MB
  107. 11 - FFNs (Feed-Forward Networks)/005 CodeChallenge Data normalization.mp496.25MB
  108. 11 - FFNs (Feed-Forward Networks)/006 Distributions of weights pre- and post-learning.mp4116.26MB
  109. 11 - FFNs (Feed-Forward Networks)/007 CodeChallenge MNIST and breadth vs. depth.mp495.21MB
  110. 11 - FFNs (Feed-Forward Networks)/008 CodeChallenge Optimizers and MNIST.mp446.26MB
  111. 11 - FFNs (Feed-Forward Networks)/009 Scrambled MNIST.mp460.17MB
  112. 11 - FFNs (Feed-Forward Networks)/010 Shifted MNIST.mp477.91MB
  113. 11 - FFNs (Feed-Forward Networks)/011 CodeChallenge The mystery of the missing 7.mp474.25MB
  114. 11 - FFNs (Feed-Forward Networks)/012 Universal approximation theorem.mp449.18MB
  115. 12 - More on data/001 Anatomy of a torch dataset and dataloader.mp4135.84MB
  116. 12 - More on data/002 Data size and network size.mp4135.67MB
  117. 12 - More on data/003 CodeChallenge unbalanced data.mp4166.26MB
  118. 12 - More on data/004 What to do about unbalanced designs.mp454.21MB
  119. 12 - More on data/005 Data oversampling in MNIST.mp4122.59MB
  120. 12 - More on data/006 Data noise augmentation (with devset+test).mp4106.09MB
  121. 12 - More on data/007 Data feature augmentation.mp4158.27MB
  122. 12 - More on data/008 Getting data into colab.mp443.75MB
  123. 12 - More on data/009 Save and load trained models.mp455.71MB
  124. 12 - More on data/010 Save the best-performing model.mp4126.5MB
  125. 12 - More on data/011 Where to find online datasets.mp441.7MB
  126. 13 - Measuring model performance/001 Two perspectives of the world.mp440.01MB
  127. 13 - Measuring model performance/002 Accuracy, precision, recall, F1.mp472.58MB
  128. 13 - Measuring model performance/003 APRF in code.mp451.79MB
  129. 13 - Measuring model performance/004 APRF example 1 wine quality.mp4107.35MB
  130. 13 - Measuring model performance/005 APRF example 2 MNIST.mp498.62MB
  131. 13 - Measuring model performance/006 CodeChallenge MNIST with unequal groups.mp425.07MB
  132. 13 - Measuring model performance/007 Computation time.mp481.73MB
  133. 13 - Measuring model performance/008 Better performance in test than train.mp444.83MB
  134. 14 - FFN milestone projects/001 Project 1 A gratuitously complex adding machine.mp448.55MB
  135. 14 - FFN milestone projects/002 Project 1 My solution.mp499.75MB
  136. 14 - FFN milestone projects/003 Project 2 Predicting heart disease.mp450.61MB
  137. 14 - FFN milestone projects/004 Project 2 My solution.mp4155.73MB
  138. 14 - FFN milestone projects/005 Project 3 FFN for missing data interpolation.mp445.39MB
  139. 14 - FFN milestone projects/006 Project 3 My solution.mp475.48MB
  140. 15 - Weight inits and investigations/001 Explanation of weight matrix sizes.mp468.98MB
  141. 15 - Weight inits and investigations/002 A surprising demo of weight initializations.mp4121.57MB
  142. 15 - Weight inits and investigations/003 Theory Why and how to initialize weights.mp479.41MB
  143. 15 - Weight inits and investigations/004 CodeChallenge Weight variance inits.mp4103.96MB
  144. 15 - Weight inits and investigations/005 Xavier and Kaiming initializations.mp4134.08MB
  145. 15 - Weight inits and investigations/006 CodeChallenge Xavier vs. Kaiming.mp4126.5MB
  146. 15 - Weight inits and investigations/007 CodeChallenge Identically random weights.mp488.17MB
  147. 15 - Weight inits and investigations/008 Freezing weights during learning.mp493.15MB
  148. 15 - Weight inits and investigations/009 Learning-related changes in weights.mp4146.78MB
  149. 15 - Weight inits and investigations/010 Use default inits or apply your own.mp428.05MB
  150. 16 - Autoencoders/001 What are autoencoders and what do they do.mp449.04MB
  151. 16 - Autoencoders/002 Denoising MNIST.mp4118.53MB
  152. 16 - Autoencoders/003 CodeChallenge How many units.mp4135.38MB
  153. 16 - Autoencoders/004 AEs for occlusion.mp4138.2MB
  154. 16 - Autoencoders/005 The latent code of MNIST.mp4161.81MB
  155. 16 - Autoencoders/006 Autoencoder with tied weights.mp4177.74MB
  156. 17 - Running models on a GPU/001 What is a GPU and why use it.mp488.73MB
  157. 17 - Running models on a GPU/002 Implementation.mp476.6MB
  158. 17 - Running models on a GPU/003 CodeChallenge Run an experiment on the GPU.mp452.99MB
  159. 18 - Convolution and transformations/001 Convolution concepts.mp497.99MB
  160. 18 - Convolution and transformations/002 Feature maps and convolution kernels.mp470.41MB
  161. 18 - Convolution and transformations/003 Convolution in code.mp4173.1MB
  162. 18 - Convolution and transformations/004 Convolution parameters (stride, padding).mp466.93MB
  163. 18 - Convolution and transformations/005 The Conv2 class in PyTorch.mp4100.19MB
  164. 18 - Convolution and transformations/006 CodeChallenge Choose the parameters.mp458.71MB
  165. 18 - Convolution and transformations/007 Transpose convolution.mp492.89MB
  166. 18 - Convolution and transformations/008 Maxmean pooling.mp489.07MB
  167. 18 - Convolution and transformations/009 Pooling in PyTorch.mp481.02MB
  168. 18 - Convolution and transformations/010 To pool or to stride.mp455.51MB
  169. 18 - Convolution and transformations/011 Image transforms.mp4129.9MB
  170. 18 - Convolution and transformations/012 Creating and using custom DataLoaders.mp4139.53MB
  171. 19 - Understand and design CNNs/001 The canonical CNN architecture.mp455.83MB
  172. 19 - Understand and design CNNs/002 CNN to classify MNIST digits.mp4200.33MB
  173. 19 - Understand and design CNNs/003 CNN on shifted MNIST.mp458.34MB
  174. 19 - Understand and design CNNs/004 Classify Gaussian blurs.mp4185.14MB
  175. 19 - Understand and design CNNs/005 Examine feature map activations.mp4260.56MB
  176. 19 - Understand and design CNNs/006 CodeChallenge Softcode internal parameters.mp4120.1MB
  177. 19 - Understand and design CNNs/007 CodeChallenge How wide the FC.mp494.08MB
  178. 19 - Understand and design CNNs/008 Do autoencoders clean Gaussians.mp4147.88MB
  179. 19 - Understand and design CNNs/009 CodeChallenge AEs and occluded Gaussians.mp428.58MB
  180. 19 - Understand and design CNNs/010 CodeChallenge Custom loss functions.mp4132.89MB
  181. 19 - Understand and design CNNs/011 Discover the Gaussian parameters.mp4136.65MB
  182. 19 - Understand and design CNNs/012 The EMNIST dataset (letter recognition).mp4201.31MB
  183. 19 - Understand and design CNNs/013 Dropout in CNNs.mp482.73MB
  184. 19 - Understand and design CNNs/014 CodeChallenge How low can you go.mp455.36MB
  185. 19 - Understand and design CNNs/015 CodeChallenge Varying number of channels.mp492.37MB
  186. 19 - Understand and design CNNs/016 So many possibilities! How to create a CNN.mp421.04MB
  187. 20 - CNN milestone projects/001 Project 1 Import and classify CIFAR10.mp448.36MB
  188. 20 - CNN milestone projects/002 Project 1 My solution.mp4118.6MB
  189. 20 - CNN milestone projects/003 Project 2 CIFAR-autoencoder.mp433.37MB
  190. 20 - CNN milestone projects/004 Project 3 FMNIST.mp426.45MB
  191. 20 - CNN milestone projects/005 Project 4 Psychometric functions in CNNs.mp476.27MB
  192. 21 - Transfer learning/001 Transfer learning What, why, and when.mp496.61MB
  193. 21 - Transfer learning/002 Transfer learning MNIST - FMNIST.mp490.35MB
  194. 21 - Transfer learning/003 CodeChallenge letters to numbers.mp4118.74MB
  195. 21 - Transfer learning/004 Famous CNN architectures.mp441.28MB
  196. 21 - Transfer learning/005 Transfer learning with ResNet-18.mp4148.46MB
  197. 21 - Transfer learning/006 CodeChallenge VGG-16.mp420.28MB
  198. 21 - Transfer learning/007 Pretraining with autoencoders.mp4156.58MB
  199. 21 - Transfer learning/008 CIFAR10 with autoencoder-pretrained model.mp4153.34MB
  200. 22 - Style transfer/001 What is style transfer and how does it work.mp440.57MB
  201. 22 - Style transfer/002 The Gram matrix (feature activation covariance).mp466.49MB
  202. 22 - Style transfer/003 The style transfer algorithm.mp467.31MB
  203. 22 - Style transfer/004 Transferring the screaming bathtub.mp4216.82MB
  204. 22 - Style transfer/005 CodeChallenge Style transfer with AlexNet.mp453.47MB
  205. 23 - Generative adversarial networks/001 GAN What, why, and how.mp489.74MB
  206. 23 - Generative adversarial networks/002 Linear GAN with MNIST.mp4169.9MB
  207. 23 - Generative adversarial networks/003 CodeChallenge Linear GAN with FMNIST.mp462.73MB
  208. 23 - Generative adversarial networks/004 CNN GAN with Gaussians.mp4135.7MB
  209. 23 - Generative adversarial networks/005 CodeChallenge Gaussians with fewer layers.mp453.06MB
  210. 23 - Generative adversarial networks/006 CNN GAN with FMNIST.mp454.58MB
  211. 23 - Generative adversarial networks/007 CodeChallenge CNN GAN with CIFAR.mp460.77MB
  212. 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/001 Leveraging sequences in deep learning.mp472.79MB
  213. 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/002 How RNNs work.mp474.85MB
  214. 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/003 The RNN class in PyTorch.mp4122.98MB
  215. 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/004 Predicting alternating sequences.mp4160.16MB
  216. 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/005 CodeChallenge sine wave extrapolation.mp4195.67MB
  217. 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/006 More on RNNs Hidden states, embeddings.mp429.04MB
  218. 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/007 GRU and LSTM.mp4129.66MB
  219. 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/008 The LSTM and GRU classes.mp4120.14MB
  220. 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/009 Lorem ipsum.mp4192.53MB
  221. 25 - Ethics of deep learning/001 Will AI save us or destroy us.mp465.92MB
  222. 25 - Ethics of deep learning/002 Example case studies.mp452.92MB
  223. 25 - Ethics of deep learning/003 Some other possible ethical scenarios.mp466.25MB
  224. 25 - Ethics of deep learning/004 Will deep learning take our jobs.mp475.14MB
  225. 25 - Ethics of deep learning/005 Accountability and making ethical AI.mp470.06MB
  226. 26 - Where to go from here/001 How to learn topic _X_ in deep learning.mp442.03MB
  227. 26 - Where to go from here/002 How to read academic DL papers.mp4141.85MB
  228. 27 - Python intro Data types/001 How to learn from the Python tutorial.mp421.97MB
  229. 27 - Python intro Data types/002 Variables.mp477.58MB
  230. 27 - Python intro Data types/003 Math and printing.mp478.5MB
  231. 27 - Python intro Data types/004 Lists (1 of 2).mp455.04MB
  232. 27 - Python intro Data types/005 Lists (2 of 2).mp446.69MB
  233. 27 - Python intro Data types/006 Tuples.mp435.75MB
  234. 27 - Python intro Data types/007 Booleans.mp476.83MB
  235. 27 - Python intro Data types/008 Dictionaries.mp450.67MB
  236. 28 - Python intro Indexing, slicing/001 Indexing.mp451.07MB
  237. 28 - Python intro Indexing, slicing/002 Slicing.mp448.45MB
  238. 29 - Python intro Functions/001 Inputs and outputs.mp429.49MB
  239. 29 - Python intro Functions/002 Python libraries (numpy).mp463.39MB
  240. 29 - Python intro Functions/003 Python libraries (pandas).mp481.19MB
  241. 29 - Python intro Functions/004 Getting help on functions.mp448.6MB
  242. 29 - Python intro Functions/005 Creating functions.mp488.43MB
  243. 29 - Python intro Functions/006 Global and local variable scopes.mp465.96MB
  244. 29 - Python intro Functions/007 Copies and referents of variables.mp423.78MB
  245. 29 - Python intro Functions/008 Classes and object-oriented programming.mp4108.18MB
  246. 30 - Python intro Flow control/001 If-else statements.mp466.8MB
  247. 30 - Python intro Flow control/002 If-else statements, part 2.mp491.12MB
  248. 30 - Python intro Flow control/003 For loops.mp487.13MB
  249. 30 - Python intro Flow control/004 Enumerate and zip.mp458.59MB
  250. 30 - Python intro Flow control/005 Continue.mp433.03MB
  251. 30 - Python intro Flow control/006 Initializing variables.mp491.05MB
  252. 30 - Python intro Flow control/007 Single-line loops (list comprehension).mp475.14MB
  253. 30 - Python intro Flow control/008 while loops.mp491.1MB
  254. 30 - Python intro Flow control/009 Broadcasting in numpy.mp471.05MB
  255. 30 - Python intro Flow control/010 Function error checking and handling.mp499.87MB
  256. 31 - Python intro Text and plots/001 Printing and string interpolation.mp494.83MB
  257. 31 - Python intro Text and plots/002 Plotting dots and lines.mp453.87MB
  258. 31 - Python intro Text and plots/003 Subplot geometry.mp486.78MB
  259. 31 - Python intro Text and plots/004 Making the graphs look nicer.mp4107.66MB
  260. 31 - Python intro Text and plots/005 Seaborn.mp459.72MB
  261. 31 - Python intro Text and plots/006 Images.mp493.56MB
  262. 31 - Python intro Text and plots/007 Export plots in low and high resolution.mp417.17MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统