首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[GigaCourse.Com] Udemy - A deep understanding of deep learning (with Python intro)
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2022-8-26 21:50
2025-1-26 08:34
222
21.97 GB
262
磁力链接
magnet:?xt=urn:btih:d7f7527973503ccb602b6dfd81ed0f16555b8fbe
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOmQ3Zjc1Mjc5NzM1MDNjY2I2MDJiNmRmZDgxZWQwZjE2NTU1YjhmYmVaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
GigaCourse
Com
Udemy
-
A
deep
understanding
of
deep
learning
with
Python
intro
文件列表
01 - Introduction/001 How to learn from this course.mp4
54.97MB
01 - Introduction/002 Using Udemy like a pro.mp4
54.37MB
02 - Download all course materials/001 Downloading and using the code.mp4
45.65MB
02 - Download all course materials/002 My policy on code-sharing.mp4
10.24MB
03 - Concepts in deep learning/001 What is an artificial neural network.mp4
65.38MB
03 - Concepts in deep learning/002 How models learn.mp4
72.79MB
03 - Concepts in deep learning/003 The role of DL in science and knowledge.mp4
34.76MB
03 - Concepts in deep learning/004 Running experiments to understand DL.mp4
74.84MB
03 - Concepts in deep learning/005 Are artificial neurons like biological neurons.mp4
114.65MB
04 - About the Python tutorial/001 Should you watch the Python tutorial.mp4
23.77MB
05 - Math, numpy, PyTorch/002 Introduction to this section.mp4
11.12MB
05 - Math, numpy, PyTorch/003 Spectral theories in mathematics.mp4
51.06MB
05 - Math, numpy, PyTorch/004 Terms and datatypes in math and computers.mp4
38.08MB
05 - Math, numpy, PyTorch/005 Converting reality to numbers.mp4
33.21MB
05 - Math, numpy, PyTorch/006 Vector and matrix transpose.mp4
37.66MB
05 - Math, numpy, PyTorch/007 OMG it's the dot product!.mp4
50.11MB
05 - Math, numpy, PyTorch/008 Matrix multiplication.mp4
85.67MB
05 - Math, numpy, PyTorch/009 Softmax.mp4
95.96MB
05 - Math, numpy, PyTorch/010 Logarithms.mp4
43.88MB
05 - Math, numpy, PyTorch/011 Entropy and cross-entropy.mp4
106MB
05 - Math, numpy, PyTorch/012 Minmax and argminargmax.mp4
88.21MB
05 - Math, numpy, PyTorch/013 Mean and variance.mp4
81.42MB
05 - Math, numpy, PyTorch/014 Random sampling and sampling variability.mp4
85.42MB
05 - Math, numpy, PyTorch/015 Reproducible randomness via seeding.mp4
69.7MB
05 - Math, numpy, PyTorch/016 The t-test.mp4
81.36MB
05 - Math, numpy, PyTorch/017 Derivatives intuition and polynomials.mp4
80.3MB
05 - Math, numpy, PyTorch/018 Derivatives find minima.mp4
45.47MB
05 - Math, numpy, PyTorch/019 Derivatives product and chain rules.mp4
55.63MB
06 - Gradient descent/001 Overview of gradient descent.mp4
68.44MB
06 - Gradient descent/002 What about local minima.mp4
67.08MB
06 - Gradient descent/003 Gradient descent in 1D.mp4
119.29MB
06 - Gradient descent/004 CodeChallenge unfortunate starting value.mp4
77.09MB
06 - Gradient descent/005 Gradient descent in 2D.mp4
96.38MB
06 - Gradient descent/006 CodeChallenge 2D gradient ascent.mp4
39.36MB
06 - Gradient descent/007 Parametric experiments on g.d.mp4
135.61MB
06 - Gradient descent/008 CodeChallenge fixed vs. dynamic learning rate.mp4
113.6MB
06 - Gradient descent/009 Vanishing and exploding gradients.mp4
30.24MB
06 - Gradient descent/010 Tangent Notebook revision history.mp4
9.88MB
07 - ANNs (Artificial Neural Networks)/001 The perceptron and ANN architecture.mp4
85.84MB
07 - ANNs (Artificial Neural Networks)/002 A geometric view of ANNs.mp4
70.88MB
07 - ANNs (Artificial Neural Networks)/003 ANN math part 1 (forward prop).mp4
73.12MB
07 - ANNs (Artificial Neural Networks)/004 ANN math part 2 (errors, loss, cost).mp4
48.47MB
07 - ANNs (Artificial Neural Networks)/005 ANN math part 3 (backprop).mp4
52.89MB
07 - ANNs (Artificial Neural Networks)/006 ANN for regression.mp4
135.5MB
07 - ANNs (Artificial Neural Networks)/007 CodeChallenge manipulate regression slopes.mp4
139.12MB
07 - ANNs (Artificial Neural Networks)/008 ANN for classifying qwerties.mp4
151.12MB
07 - ANNs (Artificial Neural Networks)/009 Learning rates comparison.mp4
168.64MB
07 - ANNs (Artificial Neural Networks)/010 Multilayer ANN.mp4
144.7MB
07 - ANNs (Artificial Neural Networks)/011 Linear solutions to linear problems.mp4
50.37MB
07 - ANNs (Artificial Neural Networks)/012 Why multilayer linear models don't exist.mp4
26.46MB
07 - ANNs (Artificial Neural Networks)/013 Multi-output ANN (iris dataset).mp4
186.77MB
07 - ANNs (Artificial Neural Networks)/014 CodeChallenge more qwerties!.mp4
95.1MB
07 - ANNs (Artificial Neural Networks)/015 Comparing the number of hidden units.mp4
71.15MB
07 - ANNs (Artificial Neural Networks)/016 Depth vs. breadth number of parameters.mp4
132.07MB
07 - ANNs (Artificial Neural Networks)/017 Defining models using sequential vs. class.mp4
89.48MB
07 - ANNs (Artificial Neural Networks)/018 Model depth vs. breadth.mp4
158.91MB
07 - ANNs (Artificial Neural Networks)/019 CodeChallenge convert sequential to class.mp4
51.44MB
07 - ANNs (Artificial Neural Networks)/021 Reflection Are DL models understandable yet.mp4
58.59MB
08 - Overfitting and cross-validation/001 What is overfitting and is it as bad as they say.mp4
73.13MB
08 - Overfitting and cross-validation/002 Cross-validation.mp4
88.19MB
08 - Overfitting and cross-validation/003 Generalization.mp4
32.44MB
08 - Overfitting and cross-validation/004 Cross-validation -- manual separation.mp4
98.3MB
08 - Overfitting and cross-validation/005 Cross-validation -- scikitlearn.mp4
142.88MB
08 - Overfitting and cross-validation/006 Cross-validation -- DataLoader.mp4
172.32MB
08 - Overfitting and cross-validation/007 Splitting data into train, devset, test.mp4
79.21MB
08 - Overfitting and cross-validation/008 Cross-validation on regression.mp4
60.35MB
09 - Regularization/001 Regularization Concept and methods.mp4
80.05MB
09 - Regularization/002 train() and eval() modes.mp4
38.34MB
09 - Regularization/003 Dropout regularization.mp4
138.39MB
09 - Regularization/004 Dropout regularization in practice.mp4
183.23MB
09 - Regularization/005 Dropout example 2.mp4
53.87MB
09 - Regularization/006 Weight regularization (L1L2) math.mp4
85.41MB
09 - Regularization/007 L2 regularization in practice.mp4
110.47MB
09 - Regularization/008 L1 regularization in practice.mp4
99.44MB
09 - Regularization/009 Training in mini-batches.mp4
62.12MB
09 - Regularization/010 Batch training in action.mp4
89.1MB
09 - Regularization/011 The importance of equal batch sizes.mp4
60.11MB
09 - Regularization/012 CodeChallenge Effects of mini-batch size.mp4
95.42MB
10 - Metaparameters (activations, optimizers)/001 What are metaparameters.mp4
32.7MB
10 - Metaparameters (activations, optimizers)/002 The wine quality dataset.mp4
143.5MB
10 - Metaparameters (activations, optimizers)/003 CodeChallenge Minibatch size in the wine dataset.mp4
118.79MB
10 - Metaparameters (activations, optimizers)/004 Data normalization.mp4
59.81MB
10 - Metaparameters (activations, optimizers)/005 The importance of data normalization.mp4
64.65MB
10 - Metaparameters (activations, optimizers)/006 Batch normalization.mp4
76.81MB
10 - Metaparameters (activations, optimizers)/007 Batch normalization in practice.mp4
61.76MB
10 - Metaparameters (activations, optimizers)/008 CodeChallenge Batch-normalize the qwerties.mp4
41.43MB
10 - Metaparameters (activations, optimizers)/009 Activation functions.mp4
97.03MB
10 - Metaparameters (activations, optimizers)/010 Activation functions in PyTorch.mp4
91.46MB
10 - Metaparameters (activations, optimizers)/011 Activation functions comparison.mp4
73.9MB
10 - Metaparameters (activations, optimizers)/012 CodeChallenge Compare relu variants.mp4
63.97MB
10 - Metaparameters (activations, optimizers)/013 CodeChallenge Predict sugar.mp4
122.1MB
10 - Metaparameters (activations, optimizers)/014 Loss functions.mp4
90.3MB
10 - Metaparameters (activations, optimizers)/015 Loss functions in PyTorch.mp4
138.1MB
10 - Metaparameters (activations, optimizers)/016 More practice with multioutput ANNs.mp4
99.8MB
10 - Metaparameters (activations, optimizers)/017 Optimizers (minibatch, momentum).mp4
98.07MB
10 - Metaparameters (activations, optimizers)/018 SGD with momentum.mp4
62.1MB
10 - Metaparameters (activations, optimizers)/019 Optimizers (RMSprop, Adam).mp4
76.73MB
10 - Metaparameters (activations, optimizers)/020 Optimizers comparison.mp4
86.88MB
10 - Metaparameters (activations, optimizers)/021 CodeChallenge Optimizers and... something.mp4
49.77MB
10 - Metaparameters (activations, optimizers)/022 CodeChallenge Adam with L2 regularization.mp4
53MB
10 - Metaparameters (activations, optimizers)/023 Learning rate decay.mp4
96.9MB
10 - Metaparameters (activations, optimizers)/024 How to pick the right metaparameters.mp4
61.74MB
11 - FFNs (Feed-Forward Networks)/001 What are fully-connected and feedforward networks.mp4
25.53MB
11 - FFNs (Feed-Forward Networks)/002 The MNIST dataset.mp4
101.38MB
11 - FFNs (Feed-Forward Networks)/003 FFN to classify digits.mp4
161.85MB
11 - FFNs (Feed-Forward Networks)/004 CodeChallenge Binarized MNIST images.mp4
40.78MB
11 - FFNs (Feed-Forward Networks)/005 CodeChallenge Data normalization.mp4
96.25MB
11 - FFNs (Feed-Forward Networks)/006 Distributions of weights pre- and post-learning.mp4
116.26MB
11 - FFNs (Feed-Forward Networks)/007 CodeChallenge MNIST and breadth vs. depth.mp4
95.21MB
11 - FFNs (Feed-Forward Networks)/008 CodeChallenge Optimizers and MNIST.mp4
46.26MB
11 - FFNs (Feed-Forward Networks)/009 Scrambled MNIST.mp4
60.17MB
11 - FFNs (Feed-Forward Networks)/010 Shifted MNIST.mp4
77.91MB
11 - FFNs (Feed-Forward Networks)/011 CodeChallenge The mystery of the missing 7.mp4
74.25MB
11 - FFNs (Feed-Forward Networks)/012 Universal approximation theorem.mp4
49.18MB
12 - More on data/001 Anatomy of a torch dataset and dataloader.mp4
135.84MB
12 - More on data/002 Data size and network size.mp4
135.67MB
12 - More on data/003 CodeChallenge unbalanced data.mp4
166.26MB
12 - More on data/004 What to do about unbalanced designs.mp4
54.21MB
12 - More on data/005 Data oversampling in MNIST.mp4
122.59MB
12 - More on data/006 Data noise augmentation (with devset+test).mp4
106.09MB
12 - More on data/007 Data feature augmentation.mp4
158.27MB
12 - More on data/008 Getting data into colab.mp4
43.75MB
12 - More on data/009 Save and load trained models.mp4
55.71MB
12 - More on data/010 Save the best-performing model.mp4
126.5MB
12 - More on data/011 Where to find online datasets.mp4
41.7MB
13 - Measuring model performance/001 Two perspectives of the world.mp4
40.01MB
13 - Measuring model performance/002 Accuracy, precision, recall, F1.mp4
72.58MB
13 - Measuring model performance/003 APRF in code.mp4
51.79MB
13 - Measuring model performance/004 APRF example 1 wine quality.mp4
107.35MB
13 - Measuring model performance/005 APRF example 2 MNIST.mp4
98.62MB
13 - Measuring model performance/006 CodeChallenge MNIST with unequal groups.mp4
25.07MB
13 - Measuring model performance/007 Computation time.mp4
81.73MB
13 - Measuring model performance/008 Better performance in test than train.mp4
44.83MB
14 - FFN milestone projects/001 Project 1 A gratuitously complex adding machine.mp4
48.55MB
14 - FFN milestone projects/002 Project 1 My solution.mp4
99.75MB
14 - FFN milestone projects/003 Project 2 Predicting heart disease.mp4
50.61MB
14 - FFN milestone projects/004 Project 2 My solution.mp4
155.73MB
14 - FFN milestone projects/005 Project 3 FFN for missing data interpolation.mp4
45.39MB
14 - FFN milestone projects/006 Project 3 My solution.mp4
75.48MB
15 - Weight inits and investigations/001 Explanation of weight matrix sizes.mp4
68.98MB
15 - Weight inits and investigations/002 A surprising demo of weight initializations.mp4
121.57MB
15 - Weight inits and investigations/003 Theory Why and how to initialize weights.mp4
79.41MB
15 - Weight inits and investigations/004 CodeChallenge Weight variance inits.mp4
103.96MB
15 - Weight inits and investigations/005 Xavier and Kaiming initializations.mp4
134.08MB
15 - Weight inits and investigations/006 CodeChallenge Xavier vs. Kaiming.mp4
126.5MB
15 - Weight inits and investigations/007 CodeChallenge Identically random weights.mp4
88.17MB
15 - Weight inits and investigations/008 Freezing weights during learning.mp4
93.15MB
15 - Weight inits and investigations/009 Learning-related changes in weights.mp4
146.78MB
15 - Weight inits and investigations/010 Use default inits or apply your own.mp4
28.05MB
16 - Autoencoders/001 What are autoencoders and what do they do.mp4
49.04MB
16 - Autoencoders/002 Denoising MNIST.mp4
118.53MB
16 - Autoencoders/003 CodeChallenge How many units.mp4
135.38MB
16 - Autoencoders/004 AEs for occlusion.mp4
138.2MB
16 - Autoencoders/005 The latent code of MNIST.mp4
161.81MB
16 - Autoencoders/006 Autoencoder with tied weights.mp4
177.74MB
17 - Running models on a GPU/001 What is a GPU and why use it.mp4
88.73MB
17 - Running models on a GPU/002 Implementation.mp4
76.6MB
17 - Running models on a GPU/003 CodeChallenge Run an experiment on the GPU.mp4
52.99MB
18 - Convolution and transformations/001 Convolution concepts.mp4
97.99MB
18 - Convolution and transformations/002 Feature maps and convolution kernels.mp4
70.41MB
18 - Convolution and transformations/003 Convolution in code.mp4
173.1MB
18 - Convolution and transformations/004 Convolution parameters (stride, padding).mp4
66.93MB
18 - Convolution and transformations/005 The Conv2 class in PyTorch.mp4
100.19MB
18 - Convolution and transformations/006 CodeChallenge Choose the parameters.mp4
58.71MB
18 - Convolution and transformations/007 Transpose convolution.mp4
92.89MB
18 - Convolution and transformations/008 Maxmean pooling.mp4
89.07MB
18 - Convolution and transformations/009 Pooling in PyTorch.mp4
81.02MB
18 - Convolution and transformations/010 To pool or to stride.mp4
55.51MB
18 - Convolution and transformations/011 Image transforms.mp4
129.9MB
18 - Convolution and transformations/012 Creating and using custom DataLoaders.mp4
139.53MB
19 - Understand and design CNNs/001 The canonical CNN architecture.mp4
55.83MB
19 - Understand and design CNNs/002 CNN to classify MNIST digits.mp4
200.33MB
19 - Understand and design CNNs/003 CNN on shifted MNIST.mp4
58.34MB
19 - Understand and design CNNs/004 Classify Gaussian blurs.mp4
185.14MB
19 - Understand and design CNNs/005 Examine feature map activations.mp4
260.56MB
19 - Understand and design CNNs/006 CodeChallenge Softcode internal parameters.mp4
120.1MB
19 - Understand and design CNNs/007 CodeChallenge How wide the FC.mp4
94.08MB
19 - Understand and design CNNs/008 Do autoencoders clean Gaussians.mp4
147.88MB
19 - Understand and design CNNs/009 CodeChallenge AEs and occluded Gaussians.mp4
28.58MB
19 - Understand and design CNNs/010 CodeChallenge Custom loss functions.mp4
132.89MB
19 - Understand and design CNNs/011 Discover the Gaussian parameters.mp4
136.65MB
19 - Understand and design CNNs/012 The EMNIST dataset (letter recognition).mp4
201.31MB
19 - Understand and design CNNs/013 Dropout in CNNs.mp4
82.73MB
19 - Understand and design CNNs/014 CodeChallenge How low can you go.mp4
55.36MB
19 - Understand and design CNNs/015 CodeChallenge Varying number of channels.mp4
92.37MB
19 - Understand and design CNNs/016 So many possibilities! How to create a CNN.mp4
21.04MB
20 - CNN milestone projects/001 Project 1 Import and classify CIFAR10.mp4
48.36MB
20 - CNN milestone projects/002 Project 1 My solution.mp4
118.6MB
20 - CNN milestone projects/003 Project 2 CIFAR-autoencoder.mp4
33.37MB
20 - CNN milestone projects/004 Project 3 FMNIST.mp4
26.45MB
20 - CNN milestone projects/005 Project 4 Psychometric functions in CNNs.mp4
76.27MB
21 - Transfer learning/001 Transfer learning What, why, and when.mp4
96.61MB
21 - Transfer learning/002 Transfer learning MNIST - FMNIST.mp4
90.35MB
21 - Transfer learning/003 CodeChallenge letters to numbers.mp4
118.74MB
21 - Transfer learning/004 Famous CNN architectures.mp4
41.28MB
21 - Transfer learning/005 Transfer learning with ResNet-18.mp4
148.46MB
21 - Transfer learning/006 CodeChallenge VGG-16.mp4
20.28MB
21 - Transfer learning/007 Pretraining with autoencoders.mp4
156.58MB
21 - Transfer learning/008 CIFAR10 with autoencoder-pretrained model.mp4
153.34MB
22 - Style transfer/001 What is style transfer and how does it work.mp4
40.57MB
22 - Style transfer/002 The Gram matrix (feature activation covariance).mp4
66.49MB
22 - Style transfer/003 The style transfer algorithm.mp4
67.31MB
22 - Style transfer/004 Transferring the screaming bathtub.mp4
216.82MB
22 - Style transfer/005 CodeChallenge Style transfer with AlexNet.mp4
53.47MB
23 - Generative adversarial networks/001 GAN What, why, and how.mp4
89.74MB
23 - Generative adversarial networks/002 Linear GAN with MNIST.mp4
169.9MB
23 - Generative adversarial networks/003 CodeChallenge Linear GAN with FMNIST.mp4
62.73MB
23 - Generative adversarial networks/004 CNN GAN with Gaussians.mp4
135.7MB
23 - Generative adversarial networks/005 CodeChallenge Gaussians with fewer layers.mp4
53.06MB
23 - Generative adversarial networks/006 CNN GAN with FMNIST.mp4
54.58MB
23 - Generative adversarial networks/007 CodeChallenge CNN GAN with CIFAR.mp4
60.77MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/001 Leveraging sequences in deep learning.mp4
72.79MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/002 How RNNs work.mp4
74.85MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/003 The RNN class in PyTorch.mp4
122.98MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/004 Predicting alternating sequences.mp4
160.16MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/005 CodeChallenge sine wave extrapolation.mp4
195.67MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/006 More on RNNs Hidden states, embeddings.mp4
29.04MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/007 GRU and LSTM.mp4
129.66MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/008 The LSTM and GRU classes.mp4
120.14MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/009 Lorem ipsum.mp4
192.53MB
25 - Ethics of deep learning/001 Will AI save us or destroy us.mp4
65.92MB
25 - Ethics of deep learning/002 Example case studies.mp4
52.92MB
25 - Ethics of deep learning/003 Some other possible ethical scenarios.mp4
66.25MB
25 - Ethics of deep learning/004 Will deep learning take our jobs.mp4
75.14MB
25 - Ethics of deep learning/005 Accountability and making ethical AI.mp4
70.06MB
26 - Where to go from here/001 How to learn topic _X_ in deep learning.mp4
42.03MB
26 - Where to go from here/002 How to read academic DL papers.mp4
141.85MB
27 - Python intro Data types/001 How to learn from the Python tutorial.mp4
21.97MB
27 - Python intro Data types/002 Variables.mp4
77.58MB
27 - Python intro Data types/003 Math and printing.mp4
78.5MB
27 - Python intro Data types/004 Lists (1 of 2).mp4
55.04MB
27 - Python intro Data types/005 Lists (2 of 2).mp4
46.69MB
27 - Python intro Data types/006 Tuples.mp4
35.75MB
27 - Python intro Data types/007 Booleans.mp4
76.83MB
27 - Python intro Data types/008 Dictionaries.mp4
50.67MB
28 - Python intro Indexing, slicing/001 Indexing.mp4
51.07MB
28 - Python intro Indexing, slicing/002 Slicing.mp4
48.45MB
29 - Python intro Functions/001 Inputs and outputs.mp4
29.49MB
29 - Python intro Functions/002 Python libraries (numpy).mp4
63.39MB
29 - Python intro Functions/003 Python libraries (pandas).mp4
81.19MB
29 - Python intro Functions/004 Getting help on functions.mp4
48.6MB
29 - Python intro Functions/005 Creating functions.mp4
88.43MB
29 - Python intro Functions/006 Global and local variable scopes.mp4
65.96MB
29 - Python intro Functions/007 Copies and referents of variables.mp4
23.78MB
29 - Python intro Functions/008 Classes and object-oriented programming.mp4
108.18MB
30 - Python intro Flow control/001 If-else statements.mp4
66.8MB
30 - Python intro Flow control/002 If-else statements, part 2.mp4
91.12MB
30 - Python intro Flow control/003 For loops.mp4
87.13MB
30 - Python intro Flow control/004 Enumerate and zip.mp4
58.59MB
30 - Python intro Flow control/005 Continue.mp4
33.03MB
30 - Python intro Flow control/006 Initializing variables.mp4
91.05MB
30 - Python intro Flow control/007 Single-line loops (list comprehension).mp4
75.14MB
30 - Python intro Flow control/008 while loops.mp4
91.1MB
30 - Python intro Flow control/009 Broadcasting in numpy.mp4
71.05MB
30 - Python intro Flow control/010 Function error checking and handling.mp4
99.87MB
31 - Python intro Text and plots/001 Printing and string interpolation.mp4
94.83MB
31 - Python intro Text and plots/002 Plotting dots and lines.mp4
53.87MB
31 - Python intro Text and plots/003 Subplot geometry.mp4
86.78MB
31 - Python intro Text and plots/004 Making the graphs look nicer.mp4
107.66MB
31 - Python intro Text and plots/005 Seaborn.mp4
59.72MB
31 - Python intro Text and plots/006 Images.mp4
93.56MB
31 - Python intro Text and plots/007 Export plots in low and high resolution.mp4
17.17MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统