首页 磁力链接怎么用

[FreeCourseSite.com] Udemy - Data Science Supervised Machine Learning in Python

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2020-1-23 12:45 2024-10-27 00:05 144 1004.15 MB 51
二维码链接
[FreeCourseSite.com] Udemy - Data Science Supervised Machine Learning in Python的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Introduction and Review/1. Introduction and Outline.mp47.63MB
  2. 1. Introduction and Review/2. Review of Important Concepts.mp46.01MB
  3. 1. Introduction and Review/3. Where to get the Code and Data.mp43.86MB
  4. 1. Introduction and Review/4. How to Succeed in this Course.mp43.3MB
  5. 2. K-Nearest Neighbor/1. K-Nearest Neighbor Intuition.mp417.58MB
  6. 2. K-Nearest Neighbor/2. K-Nearest Neighbor Concepts.mp48.6MB
  7. 2. K-Nearest Neighbor/3. KNN in Code with MNIST.mp417.96MB
  8. 2. K-Nearest Neighbor/4. When KNN Can Fail.mp47.7MB
  9. 2. K-Nearest Neighbor/5. KNN for the XOR Problem.mp44.26MB
  10. 2. K-Nearest Neighbor/6. KNN for the Donut Problem.mp45.43MB
  11. 2. K-Nearest Neighbor/7. Effect of K.mp435.8MB
  12. 3. Naive Bayes and Bayes Classifiers/1. Bayes Classifier Intuition (Continuous).mp480.16MB
  13. 3. Naive Bayes and Bayes Classifiers/2. Bayes Classifier Intuition (Discrete).mp450.1MB
  14. 3. Naive Bayes and Bayes Classifiers/3. Naive Bayes.mp415.7MB
  15. 3. Naive Bayes and Bayes Classifiers/4. Naive Bayes Handwritten Example.mp45.84MB
  16. 3. Naive Bayes and Bayes Classifiers/5. Naive Bayes in Code with MNIST.mp414.43MB
  17. 3. Naive Bayes and Bayes Classifiers/6. Non-Naive Bayes.mp47.31MB
  18. 3. Naive Bayes and Bayes Classifiers/7. Bayes Classifier in Code with MNIST.mp44.44MB
  19. 3. Naive Bayes and Bayes Classifiers/8. Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA).mp410.35MB
  20. 3. Naive Bayes and Bayes Classifiers/9. Generative vs Discriminative Models.mp45.12MB
  21. 4. Decision Trees/1. Decision Tree Intuition.mp420.37MB
  22. 4. Decision Trees/2. Decision Tree Basics.mp48.29MB
  23. 4. Decision Trees/3. Information Entropy.mp47MB
  24. 4. Decision Trees/4. Maximizing Information Gain.mp413.96MB
  25. 4. Decision Trees/5. Choosing the Best Split.mp46.72MB
  26. 4. Decision Trees/6. Decision Tree in Code.mp430.34MB
  27. 5. Perceptrons/1. Perceptron Concepts.mp412.22MB
  28. 5. Perceptrons/2. Perceptron in Code.mp413.76MB
  29. 5. Perceptrons/3. Perceptron for MNIST and XOR.mp48.74MB
  30. 5. Perceptrons/4. Perceptron Loss Function.mp46.28MB
  31. 6. Practical Machine Learning/1. Hyperparameters and Cross-Validation.mp47.43MB
  32. 6. Practical Machine Learning/2. Feature Extraction and Feature Selection.mp47.1MB
  33. 6. Practical Machine Learning/3. Comparison to Deep Learning.mp48.7MB
  34. 6. Practical Machine Learning/4. Multiclass Classification.mp45.65MB
  35. 6. Practical Machine Learning/5. Sci-Kit Learn.mp415.81MB
  36. 6. Practical Machine Learning/6. Regression with Sci-Kit Learn is Easy.mp410.76MB
  37. 7. Building a Machine Learning Web Service/1. Building a Machine Learning Web Service Concepts.mp47.24MB
  38. 7. Building a Machine Learning Web Service/2. Building a Machine Learning Web Service Code.mp411.87MB
  39. 8. Conclusion/1. What’s Next Support Vector Machines and Ensemble Methods (e.g. Random Forest).mp46.27MB
  40. 9. Appendix/1. What is the Appendix.mp45.45MB
  41. 9. Appendix/10. Python 2 vs Python 3.mp47.83MB
  42. 9. Appendix/11. What order should I take your courses in (part 1).mp429.32MB
  43. 9. Appendix/12. What order should I take your courses in (part 2).mp437.62MB
  44. 9. Appendix/2. Where to get Udemy coupons and FREE deep learning material.mp44.02MB
  45. 9. Appendix/3. Windows-Focused Environment Setup 2018.mp4186.38MB
  46. 9. Appendix/4. How to install Numpy, Scipy, Matplotlib, and Sci-Kit Learn.mp443.92MB
  47. 9. Appendix/5. How to Code by Yourself (part 1).mp424.53MB
  48. 9. Appendix/6. How to Code by Yourself (part 2).mp414.8MB
  49. 9. Appendix/7. How to Succeed in this Course (Long Version).mp412.99MB
  50. 9. Appendix/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp438.96MB
  51. 9. Appendix/9. Proof that using Jupyter Notebook is the same as not using it.mp478.25MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统