首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[DesireCourse.Net] Udemy - Tensorflow 2.0 Deep Learning and Artificial Intelligence
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2020-1-26 12:07
2024-12-20 00:35
167
6.73 GB
121
磁力链接
magnet:?xt=urn:btih:ff37ce1043e06ba5a6b030af42c408cf579f652e
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOmZmMzdjZTEwNDNlMDZiYTVhNmIwMzBhZjQyYzQwOGNmNTc5ZjY1MmVaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
DesireCourse
Net
Udemy
-
Tensorflow
2
0
Deep
Learning
and
Artificial
Intelligence
文件列表
1. Welcome/1. Introduction.mp4
39.15MB
1. Welcome/2. Outline.mp4
30.81MB
1. Welcome/3. Where to get the code.mp4
30.48MB
10. GANs (Generative Adversarial Networks)/1. GAN Theory.mp4
86.53MB
10. GANs (Generative Adversarial Networks)/2. GAN Code.mp4
78.19MB
11. Deep Reinforcement Learning (Theory)/1. Deep Reinforcement Learning Section Introduction.mp4
37.77MB
11. Deep Reinforcement Learning (Theory)/10. Epsilon-Greedy.mp4
37.58MB
11. Deep Reinforcement Learning (Theory)/11. Q-Learning.mp4
61.28MB
11. Deep Reinforcement Learning (Theory)/12. Deep Q-Learning DQN (pt 1).mp4
55.7MB
11. Deep Reinforcement Learning (Theory)/13. Deep Q-Learning DQN (pt 2).mp4
49.2MB
11. Deep Reinforcement Learning (Theory)/14. How to Learn Reinforcement Learning.mp4
37.5MB
11. Deep Reinforcement Learning (Theory)/2. Elements of a Reinforcement Learning Problem.mp4
97.78MB
11. Deep Reinforcement Learning (Theory)/3. States, Actions, Rewards, Policies.mp4
42.99MB
11. Deep Reinforcement Learning (Theory)/4. Markov Decision Processes (MDPs).mp4
48.95MB
11. Deep Reinforcement Learning (Theory)/5. The Return.mp4
20.94MB
11. Deep Reinforcement Learning (Theory)/6. Value Functions and the Bellman Equation.mp4
43.28MB
11. Deep Reinforcement Learning (Theory)/7. What does it mean to “learn”.mp4
30.35MB
11. Deep Reinforcement Learning (Theory)/8. Solving the Bellman Equation with Reinforcement Learning (pt 1).mp4
39.03MB
11. Deep Reinforcement Learning (Theory)/9. Solving the Bellman Equation with Reinforcement Learning (pt 2).mp4
52.54MB
12. Stock Trading Project with Deep Reinforcement Learning/1. Reinforcement Learning Stock Trader Introduction.mp4
29.66MB
12. Stock Trading Project with Deep Reinforcement Learning/2. Data and Environment.mp4
56.02MB
12. Stock Trading Project with Deep Reinforcement Learning/3. Replay Buffer.mp4
24.06MB
12. Stock Trading Project with Deep Reinforcement Learning/4. Program Design and Layout.mp4
29.77MB
12. Stock Trading Project with Deep Reinforcement Learning/5. Code pt 1.mp4
46.83MB
12. Stock Trading Project with Deep Reinforcement Learning/6. Code pt 2.mp4
83.39MB
12. Stock Trading Project with Deep Reinforcement Learning/7. Code pt 3.mp4
62.33MB
12. Stock Trading Project with Deep Reinforcement Learning/8. Code pt 4.mp4
59.15MB
12. Stock Trading Project with Deep Reinforcement Learning/9. Reinforcement Learning Stock Trader Discussion.mp4
18.18MB
13. Advanced Tensorflow Usage/1. What is a Web Service (Tensorflow Serving pt 1).mp4
31.56MB
13. Advanced Tensorflow Usage/2. Tensorflow Serving pt 2.mp4
124.46MB
13. Advanced Tensorflow Usage/3. Tensorflow Lite (TFLite).mp4
42.39MB
13. Advanced Tensorflow Usage/4. Why is Google the King of Distributed Computing.mp4
50.81MB
13. Advanced Tensorflow Usage/5. Training with Distributed Strategies.mp4
50.06MB
14. Low-Level Tensorflow/1. Differences Between Tensorflow 1.x and Tensorflow 2.x.mp4
42.5MB
14. Low-Level Tensorflow/2. Constants and Basic Computation.mp4
50.23MB
14. Low-Level Tensorflow/3. Variables and Gradient Tape.mp4
70.61MB
14. Low-Level Tensorflow/4. Build Your Own Custom Model.mp4
70.18MB
15. In-Depth Loss Functions/1. Mean Squared Error.mp4
37.34MB
15. In-Depth Loss Functions/2. Binary Cross Entropy.mp4
21.5MB
15. In-Depth Loss Functions/3. Categorical Cross Entropy.mp4
35.43MB
16. In-Depth Gradient Descent/1. Gradient Descent.mp4
35.54MB
16. In-Depth Gradient Descent/2. Stochastic Gradient Descent.mp4
25.04MB
16. In-Depth Gradient Descent/3. Momentum.mp4
39.35MB
16. In-Depth Gradient Descent/4. Variable and Adaptive Learning Rates.mp4
38.52MB
16. In-Depth Gradient Descent/5. Adam.mp4
42.57MB
18. Appendix FAQ/1. What is the Appendix.mp4
18.04MB
18. Appendix FAQ/10. What order should I take your courses in (part 1).mp4
88.14MB
18. Appendix FAQ/11. What order should I take your courses in (part 2).mp4
122.64MB
18. Appendix FAQ/12. Bonus Where to get discount coupons and FREE deep learning material.mp4
13.29MB
18. Appendix FAQ/2. Windows-Focused Environment Setup 2018.mp4
193.99MB
18. Appendix FAQ/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
166.72MB
18. Appendix FAQ/4. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
117.07MB
18. Appendix FAQ/5. How to Code Yourself (part 1).mp4
82.12MB
18. Appendix FAQ/6. How to Code Yourself (part 2).mp4
56.41MB
18. Appendix FAQ/7. Proof that using Jupyter Notebook is the same as not using it.mp4
77.94MB
18. Appendix FAQ/8. How to Succeed in this Course (Long Version).mp4
38.92MB
18. Appendix FAQ/9. Is Theano Dead.mp4
44.38MB
2. Google Colab/1. Intro to Google Colab, how to use a GPU or TPU for free.mp4
65.17MB
2. Google Colab/2. Tensorflow 2.0 in Google Colab.mp4
51.14MB
2. Google Colab/3. Uploading your own data to Google Colab.mp4
89.09MB
2. Google Colab/4. Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.mp4
43.85MB
3. Machine Learning and Neurons/1. What is Machine Learning.mp4
73.16MB
3. Machine Learning and Neurons/2. Code Preparation (Classification Theory).mp4
68.5MB
3. Machine Learning and Neurons/3. Classification Notebook.mp4
66.3MB
3. Machine Learning and Neurons/4. Code Preparation (Regression Theory).mp4
31.33MB
3. Machine Learning and Neurons/5. Regression Notebook.mp4
71.75MB
3. Machine Learning and Neurons/6. The Neuron.mp4
49.43MB
3. Machine Learning and Neurons/7. How does a model learn.mp4
55.02MB
3. Machine Learning and Neurons/8. Making Predictions.mp4
41.95MB
3. Machine Learning and Neurons/9. Saving and Loading a Model.mp4
35.29MB
4. Feedforward Artificial Neural Networks/1. Artificial Neural Networks Section Introduction.mp4
32.54MB
4. Feedforward Artificial Neural Networks/2. Forward Propagation.mp4
49.32MB
4. Feedforward Artificial Neural Networks/3. The Geometrical Picture.mp4
54.81MB
4. Feedforward Artificial Neural Networks/4. Activation Functions.mp4
92.17MB
4. Feedforward Artificial Neural Networks/5. Multiclass Classification.mp4
46.87MB
4. Feedforward Artificial Neural Networks/6. How to Represent Images.mp4
80.85MB
4. Feedforward Artificial Neural Networks/7. Code Preparation (ANN).mp4
56.16MB
4. Feedforward Artificial Neural Networks/8. ANN for Image Classification.mp4
58.35MB
4. Feedforward Artificial Neural Networks/9. ANN for Regression.mp4
83.95MB
5. Convolutional Neural Networks/1. What is Convolution (part 1).mp4
83.58MB
5. Convolutional Neural Networks/10. Batch Normalization.mp4
23.45MB
5. Convolutional Neural Networks/11. Improving CIFAR-10 Results.mp4
86.35MB
5. Convolutional Neural Networks/2. What is Convolution (part 2).mp4
25.15MB
5. Convolutional Neural Networks/3. What is Convolution (part 3).mp4
28.86MB
5. Convolutional Neural Networks/4. Convolution on Color Images.mp4
77.03MB
5. Convolutional Neural Networks/5. CNN Architecture.mp4
90.94MB
5. Convolutional Neural Networks/6. CNN Code Preparation.mp4
86.3MB
5. Convolutional Neural Networks/7. CNN for Fashion MNIST.mp4
51.65MB
5. Convolutional Neural Networks/8. CNN for CIFAR-10.mp4
34.8MB
5. Convolutional Neural Networks/9. Data Augmentation.mp4
39.16MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/1. Sequence Data.mp4
103.19MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/10. GRU and LSTM (pt 2).mp4
53.58MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/11. A More Challenging Sequence.mp4
77.66MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/12. Demo of the Long Distance Problem.mp4
143.12MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/13. RNN for Image Classification (Theory).mp4
31.5MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/14. RNN for Image Classification (Code).mp4
27.44MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/15. Stock Return Predictions using LSTMs (pt 1).mp4
80.04MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/16. Stock Return Predictions using LSTMs (pt 2).mp4
38.19MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/17. Stock Return Predictions using LSTMs (pt 3).mp4
76.74MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/2. Forecasting.mp4
47.24MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/3. Autoregressive Linear Model for Time Series Prediction.mp4
87.68MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/4. Proof that the Linear Model Works.mp4
18.27MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/5. Recurrent Neural Networks.mp4
92.04MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/6. RNN Code Preparation.mp4
20.42MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/7. RNN for Time Series Prediction.mp4
87.22MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/8. Paying Attention to Shapes.mp4
64.34MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/9. GRU and LSTM (pt 1).mp4
76.09MB
7. Natural Language Processing (NLP)/1. Embeddings.mp4
57.96MB
7. Natural Language Processing (NLP)/2. Code Preparation (NLP).mp4
62.93MB
7. Natural Language Processing (NLP)/3. Text Preprocessing.mp4
36.14MB
7. Natural Language Processing (NLP)/4. Text Classification with LSTMs.mp4
60.56MB
7. Natural Language Processing (NLP)/5. CNNs for Text.mp4
40.86MB
7. Natural Language Processing (NLP)/6. Text Classification with CNNs.mp4
46.4MB
8. Recommender Systems/1. Recommender Systems with Deep Learning Theory.mp4
68.73MB
8. Recommender Systems/2. Recommender Systems with Deep Learning Code.mp4
58.79MB
9. Transfer Learning for Computer Vision/1. Transfer Learning Theory.mp4
55.15MB
9. Transfer Learning for Computer Vision/2. Some Pre-trained Models (VGG, ResNet, Inception, MobileNet).mp4
31.55MB
9. Transfer Learning for Computer Vision/3. Large Datasets and Data Generators.mp4
36.56MB
9. Transfer Learning for Computer Vision/4. 2 Approaches to Transfer Learning.mp4
20.62MB
9. Transfer Learning for Computer Vision/5. Transfer Learning Code (pt 1).mp4
66.57MB
9. Transfer Learning for Computer Vision/6. Transfer Learning Code (pt 2).mp4
46.06MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统